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1. Introduction
Complementarities among discrete choices typically force decision-makers to evaluate all
possible combinations. The resulting dimensionality renders such combinatorial discrete choice
problems practically infeasible to solve without additional structure—even with a moderate
number of options. Yet, complementarities arise naturally from network, scale, or cannibal-
ization effects in economic settings, such as multinational firms choosing where to operate or
retailers selecting store locations.

We develop a unified method to solve combinatorial discrete choice problems (CDCPs)
whose objective functions satisfy a simple single-crossing condition, enforcing a weak form of
complementarity or substitutability. Our approach extends to heterogeneous-agent settings
where payoffs depend on type, is many orders of magnitude faster than existing methods, and
always finds the global optimum. We apply it to a quantitative general equilibrium model of
multinational production, in which heterogeneous firms choose global production locations.
The firm problem is a CDCP: complementarities arise from scale and cannibalization effects,
and fixed costs make location choices discrete. Using the calibrated model, we show that
incorporating complementarities and fixed costs—enabled by our method—materially affects
the estimated welfare gains from multinational production.

Our method builds on Jia (2008), which develops the insight that positive complementarities
induce a form of choice monotonicity that can be used to iteratively discard suboptimal choice
combinations without computing their payoff. If an option yields a negative payoff even when
all other options are selected—maximizing complementarities—it cannot be part of the optimal
combination. Likewise, if an option has a positive payoff even in isolation, it must be included.

We show that the elimination logic in Jia (2008) extends beyond the case of positive comple-
mentarities to problems satisfying a weaker single-crossing condition. This condition requires
only that if a choice yields a positive payoff as part of a given combination, its payoff remains
weakly positive either when additional choices are added or when existing ones are removed.
Notably, our single crossing condition nests the case of negative complementarities—for exam-
ple, when new locations cannibalize demand—for which few solution methods exist, and to
which the elimination logic was previously assumed not to apply.

Iteratively applying the elimination logic often dramatically reduces the set of potentially
optimal combinations, but may still leave multiple candidates. In such cases, Jia (2008) applies
the brute force approach of explicitly computing the payoff of all remaining combinations.
Instead, we introduce a recursive branching procedure that reapplies the elimination logic to
subsets of the remaining candidates until the optimal combination is found. Our branching
method collapses to brute force in the worst case only.

CDCPs with heterogeneous agents pose an added challenge: payoffs vary by agent type,
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so the solution for one type need not apply to others. The incumbent approach—discretizing
the type space and solving a CDCP at each grid point—may introduce interpolation error.
We further extend our method to recover the exact policy function mapping types to optimal
combinations of choices. The extension requires a second single-crossing condition that induces
a form of type monotonicity, allowing us to identify the cutoff types where the policy function
changes value without solving the CDCP for every type.

We apply our method to solve a general equilibrium model of multinational production
where heterogeneous firms select locations for production. The firm problem is a CDCP: scale
economies and demand cannibalization across production locations give rise to complemen-
tarities, while location-specific fixed costs make location choices discrete. In addition, firm
heterogeneity implies that optimal location combinations differ across firms. We show how
our single crossing conditions correspond to explicit parameter restrictions in the model.

We calibrate the model to match trade and multinational activity across 32 countries. Be-
cause production location sets vary across firms, the model does not yield the aggregate
log-linear estimating equations used in standard gravity-based calibrations. Instead, we solve
the full model repeatedly to match aggregate flows, computing the policy function that maps
firm productivity to optimal location choices at each iteration. Our method makes this strat-
egy feasible even with many countries, arbitrary firm heterogeneity, and a wide range of
complementarities—from strongly positive to strongly negative.

We benchmark the performance of our method using up to 256 synthetic countries generated
by sampling from the empirical distributions of productivity and cost parameters obtained
from our calibration. With positive complementarities, our method is up to four orders of
magnitude faster than brute-force and an order of magnitude faster than the method in Jia (2008)
with discretized firm heterogeneity. It performs equally fast with negative complementarities
for which brute force was the only incumbent solution method. The speed of our method
matters especially in general equilibrium settings, where policy functions must be solved
repeatedly.

To avoid the computational burden of solving CDCPs, many quantitative models of multi-
national production rule them out by abstracting from mechanisms that give rise either to
complementarities, such as scale economies or cannibalization, or to discrete choices, such
as fixed costs. We assess the role of these ingredients in shaping the counterfactual welfare
predictions of the full model. To guide interpretation, we derive a new expression for the gains
from multinational production that extends the welfare formula in Arkolakis, Costinot, and
Rodríguez-Clare (2012) to our setting with scale economies, cannibalization, and fixed costs.
Our formula decomposes the gains from multinational production into intuitive channels,
including one that captures the effective productivity gains unlocked by firms that operate
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multiple global production locations.
Quantitatively, both complementarities and fixed costs shape the gains from multinational

production. Countries with many multinationals benefit significantly, as international produc-
tion reduces marginal costs and generates large profits. In contrast, less productive countries
with few multinationals may lose: few of their firms generate profit abroad, while they play
host to the local affiliates of foreign firms that crowd out domestic producers. Positive com-
plementarities amplify this dynamic by creating increasing returns for multinationals, further
boosting home-country gains and intensifying the crowding out in host countries. On the other
hand, negative complementarities temper this effect. Calibrations that omit fixed costs over-
state welfare gains, because all firms participate in the productivity gains accessible through
multinational production.

Modeling complementarities and agent heterogeneity has long posed a challenge in the
discrete choice literature. The classic random utility framework of McFadden (1974) assumes
perfect substitutability, so that each agent chooses a single option. This assumption permits rich
multidimensional heterogeneity via option-specific shocks and yields closed-form aggregation.
However, the literature has struggled to allow for imperfect substitutability or complementarity
among options. Some authors allow agents to choose multiple options at once but without
interdependencies in payoffs (see, e.g., Hendel 1999). Others associate each combination of
options with a random utility component (see, e.g., Train, McFadden, and Ben-Akiva 1987;
Gentzkow 2007), but aggregation then requires evaluating payoffs for all combinations which
quickly becomes infeasible in practice.

Our paper contributes to a growing quantitative literature on combinatorial discrete choice
problems that abstract from random utility components, allowing instead for large numbers
of options, more flexible functional forms, and complementarities. Jia (2008) introduces a
foundational method for solving CDCPs with strongly positive complementarities, often
applied to store expansion and firm sourcing problems (see Antras, Fort, and Tintelnot 2017;
Alfaro-Urena et al. 2023; Antràs et al. 2024b). Our extension to negative complementarities
has similarly been applied in recent work (see, e.g., Jiang 2023; Liu 2023; Sabal 2025). By
developing a method that handles both positive and negative complementarities, we also
lay the groundwork to solve mixed-complementarity problems that arise, for example, in the
multinational production model of Antràs et al. (2024b). Castro-Vincenzi et al. (2024) build on
our method to solve such problems. Moreover, our heterogeneous-agent method allows the
literature to avoid the approximation errors associated with discretizing heterogeneity when
solving CDCPs (see Tintelnot 2017; Antràs et al. 2024b).

Our method allows models of multinational production to incorporate cross-location in-
terdependencies and fixed costs without sacrificing tractability. Existing work avoids CDCPs
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by abstracting from these features (see Ramondo and Rodríguez-Clare 2013; Ramondo 2014;
Arkolakis, Ramondo, et al. 2018); solves small CDCPs via brute force (see Zheng 2016; Tintelnot
2017; Dyrda, Hong, and Steinberg 2024); or restricts attention to positive complementarities
to apply the method of Jia (2008) (see Antras, Fort, and Tintelnot 2017; Alfaro-Urena et al.
2023; Antràs et al. 2024b). We also show that complementarities and fixed costs are essential
for quantifying the gains from multinational production, both in our calibrated model and
by extending the sufficient-statistics framework of Arkolakis, Costinot, and Rodríguez-Clare
(2012) to environments with these ingredients.

Finally, we also contribute to a growing literature on algorithmic solutions to CDCPs. Recent
work imposes linear objective functions to enable integer programming (e.g., Head, Mayer,
et al. 2024), adopts greedy algorithms that do not guarantee global optimality (e.g., Fan and
Yang 2020), or uses deep learning to approximate policy functions in heterogeneous-agent
CDCPs (e.g., Kulesza 2024). In contrast, our method applies to all objectives that satisfy our
single crossing conditions, identifies the global optimum, and allows for exact aggregation
across heterogeneous agents.

2. A Unified Framework to Solve CDCPs
In this section, we formally define combinatorial discrete choice problems and show how to
solve them in cases where decisions satisfy a weak form of complementarity or substitutability.
Throughout, L denotes a finite set of items indexed by ω; P (L) its power set, that is, the
collection of all its possible subsets; and L an arbitrary element of the power set. We consider
an objective function f : P (L) → R that maps elements from the power set to a real number
and denote the space of such functions by F = { f : P (L) → R}. The Online Appendix
contains a formal mathematical treatment of all statements and results.

2.1. Defining Combinatorial Discrete Choice Problems
Consider a decision-maker choosing a set L ↑ P (L) to maximize an objective function f .
Such discrete choice problems frequently appear in economic models, for example when a
firm selects countries from which to import or a government chooses where to implement
infrastructure projects. Our example throughout this section is a profit-maximizing firm
selecting a set of foreign production locations L.

Problems with multiple discrete choices are straightforward to solve when choices are
independent, that is, when the valuation of any location ω ↑ L does not depend on the
composition of the chosen set L. In many settings, however, locations are interdependent: the
value of a location ω depends on the other locations in L. We introduce the following marginal
value operator to formalize the notion of interdependencies among locations:
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Definition 1 (Marginal Value Operator). For any ω ↑ L and L ↑ P (L), define the marginal value
operator Dω : F → F by

Dω f (L) ↓ f (L ↔ {ω})↗ f (L \ {ω}) .

If Dω f (L) does not vary in L for each ω ↑ L, the problem decomposes into |L| independent
decisions. If Dω f (L) varies with L, locations are interdependent and the firm must consider
combinations of locations. We now formally define the class of combinatorial discrete choice
problems.

Definition 2 (Combinatorial Discrete Choice Problem). A combinatorial discrete choice problem
(CDCP) is the maximization problem

max
L↑P(L)

f (L) ,

where there is at least one ω ↑ L and two sets L,L↘ ↑ P (L) for which Dω f (L) ≃= Dω f (L↘).

We refer to these types of maximization problems as combinatorial because, generically,
solving them requires evaluating the objective function for every element in the set P (L),
which grows exponentially with the number of locations L.

2.2. Solving Combinatorial Discrete Choice Problems
Without additional structure on the objective function, no known polynomial-time algorithm
exists for solving CDCPs, making the generic problem NP-hard. However, when the objective
function f satisfies a single-crossing property, we show that an iterative solution method
applies. In this section, we first introduce the property and then discuss its implications for
solving CDCPs.

Single Crossing Di!erences in Choices The single crossing differences in choices property
restricts how the marginal value of a location ω varies with the decision set L.

Definition 3 (SCD-C). The objective function f satisfies single crossing differences in choices from
above if, for every ω ↑ L, and for all decision sets L,L↘ ↑ P (L) such that L ⇐ L↘,

Dω f
(
L↘) ⇒ 0 ⇑ Dω f (L) ⇒ 0 ,

and single crossing differences in choices from below if

Dω f (L) ⇒ 0 ⇑ Dω f
(
L↘) ⇒ 0 .

The SCD-C condition restricts the marginal value function of location ω to change sign at
most once. Thus, the conditions captures a weak form of complementarity, where a location
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Dω f (·) = 0

L1 ⇐ L2 ⇐ L3 ⇐ L4

(A) SCD-C from below

L1 ⇐ L2 ⇐ L3 ⇐ L4

(B) SCD-C from above

FIGURE 1: EXAMPLE MARGINAL VALUE FUNCTIONS

Both panels show the marginal value of location as a function of a succession of nested decision sets. The solid
black line depicts a function that satisfies the weaker single crossing condition, but not the stricter super- or
submodularity condition. The dashed line depicts a function that satisfies this stronger requirement. Note that
under SCD-C, marginal values can increase or decrease arbitrarily as long as they only cross zero once.

with a positive marginal value for some decision set L retains a positive marginal value as
additional locations are added (SCD-C from below) or removed (SCD-C from above) from
L. The solid and dashed lines in the left panel of Figure 1 both show examples of how the
marginal value of a location ω can vary with SCD-C from below as locations are added to an
initial location set L1. While the marginal value may change and even decrease (solid line), it
crosses zero at most once from below. The right panel shows two marginal value functions
with SCD-C from above, which can cross zero at most once from above.1

The well-known properties of supermodularity and submodularity capture a stronger
notion of complementarity and serve as sufficient conditions for SCD-C to hold. A function f
is submodular if marginal values are monotonically decreasing, that is if Dω f (L) ⇒ Dω f (L↘)

for all L ⇓ L↘ and any ω, which implies SCD-C from above. Supermodularity reverses the
inequality and is sufficient for SCD-C from below. While both the solid and dashed lines in
Figure 1 show marginal value functions consistent with single crossing differences in choices,
only the dashed lines are consistent with sub- or supermodularity.

The weaker form of complementarity implied by the SCD-C condition broadens the range
of economic problems to which our methods apply. Consider a multinational firm like Ford,
which profitably operates plants in Germany and the United States. Supermodularity requires

1Milgrom and Shannon (1994) introduce single-crossing conditions into economics to derive comparative statics
in settings without differentiability. There is a terminological discrepancy, acknowledged in Milgrom (2004),
between Milgrom and Shannon (1994) which uses “single crossing condition,” and Milgrom (2004) which uses
“single crossing differences.” The condition we refer to as SCD-C is similar to, but weaker than, the quasi-
supermodularity condition of Milgrom and Shannon (1994). We formally establish the relationship between these
conditions in the Online Appendix. We adopt the “single-crossing differences” terminology, to emphasize that the
marginal value of the choice changes sign at most once.
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that adding a plant in Canada raises the marginal value of both the German and U.S. plants. In
reality, however, the Canadian plant may lower the value of the U.S. plant—by cannibalizing
its sales to the Canadian market—while increasing the value of the German plant through
enhanced global scale economies. Although such a scenario violates super- and submodularity,
it remains consistent with SCD-C from below, as long as the U.S. plant’s marginal value stays
weakly positive when the Canadian plant is added.

The Squeezing Procedure: Reducing a CDCP’s Domain We now introduce a method for
solving combinatorial discrete choice problems when the objective function satisfies either
form of the SCD-C condition.

Our method iteratively shrinks the domain of the CDCP without eliminating the optimal
decision set Lε ↓ arg maxL↑P(L) f (L). To operationalize this approach, we introduce the
notion of a “bounding pair,” a pair of sets

[
L,L

]
which defines a restricted subdomain of the

original CDCP that always contains Lε, so that L ⇓ Lε ⇓ L. The full domain corresponds to
the “trivial” bounding pair [∅, L]. We refer to L as the lower bounding set and L as the upper
bounding set, and say that

[
K,K

]
is “tighter” than

[
L,L

]
if L ⇓ K and K ⇓ L.

We conceptualize solving a CDCP as eliminating all non-optimal decision sets from the
problem’s domain. We thus introduce a mapping with the goal of tightening a bounding pair
around the optimal decision set Lε, progressively “squeezing” non-optimal sets out of the
domain. We refer to this mapping as the squeezing step.

Definition 4 (Squeezing step). The squeezing step is the mapping S : P (L)⇔ P (L) → P (L)⇔
P (L) defined for any L,L↘ ↑ P (L) as:

S
([
L,L↘]) =

[
inf

{
Φ (L) , Φ

(
L↘)} , sup

{
Φ (L) , Φ

(
L↘)}] ,

where Φ : P (L) → P (L) is defined as

Φ (L) = {ω ↑ L | Dω f (L) > 0} .

When the objective function satisfies SCD-C, iteratively applying the squeezing step to
the trivial bounding pair [∅, L] generates a sequence of progressively tighter bounding pairs,
converging in at most |L| steps. We now provide a constructive proof of this claim before
formally stating the result in Theorem 1.

The squeezing step builds on the mapping Φ, which identifies the set of locations ω ↑ L with
positive marginal value given the decision set L. Importantly, Φ(Lε) = Lε by construction,
highlighting that Φ is the discrete analogue of a first order condition. Section 2.3 provides a
detailed discussion of Jia (2008), which first introduced Φ in the context of a supermodular
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objective function.
The mapping Φ is monotone if and only if the underlying objective function f satisfies the

SCD-C condition. The type of SCD-C determines the direction of the monotonicity. Consider
two decision sets L,L↘ ↑ P (L) such that L ⇐ L↘. With SCD-C from above, if a location ω has a
positive marginal value in the larger set L, it must also have a positive marginal value in any
nested set L↘. As a result, L ⇐ L↘ implies Φ (L↘) ⇓ Φ (L): the mapping Φ is order-reversing.
With SCD-C from below, the logic is inverted: if ω has a positive marginal value as part of the
smaller set L, then it must have positive marginal value as part of the larger set. Then, L ⇐ L↘

implies Φ (L) ⇓ Φ (L↘) and the mapping Φ is order-preserving.2

The monotonicity of Φ simplifies the mapping S when we know the type of SCD-C the
objective function f satisfies. With SCD-C from above, the mapping Φ is order-reversing, so
that applying Φ to the lower bounding set must return a decision set that is always nested in the
decision set that results from applying Φ to the upper bounding set. As a result, S

([
L,L

])
=

[
Φ
(
L
)

, Φ (L)
]
. With SCD-C from below, the reverse logic simplifies the squeezing step to

S
([
L,L

])
=

[
Φ (L) , Φ

(
L
)]

.
The monotonicity of Φ also ensures that the pair of sets returned when applying the squeez-

ing step to a bounding pair is itself always a valid bounding pair. In particular, consider a
bounding pair

[
L,L

]
, so that L ⇓ Lε ⇓ L. If f satisfies SCD-C from above, applying Φ

reverses this order, so Φ
(
L
)
⇓ Φ (Lε) ⇓ Φ (L). Moreover, since Φ(Lε) = Lε by construc-

tion, this expression simplifies to Φ
(
L
)
⇓ Lε ⇓ Φ (L) so that

[
Φ
(
L
)

, Φ (L)
]

forms a new
bounding pair. Similarly, with SCD-C from below, the order-preserving nature of Φ implies
Φ (L) ⇓ Lε ⇓ Φ

(
L
)
.

Importantly, the monotonicity of Φ guarantees that, starting from the trivial bounding pair
[∅, L], iteratively applying the squeezing step produces bounding pairs that weakly tighten
with each iteration. For a concrete example, suppose f satisfies SCD-C from above, so that Φ is
order-reversing. Then applying the squeezing step to the trivial bounding pair yields

∅ ⇓ Lε ⇓ L ⇑ Φ (L) ⇓ Lε ⇓ Φ (∅) .

Note that the new bounding [Φ (L) , Φ (∅)] is vacuously tighter than the trivial bounding pair
[∅, L]. Applying the squeezing step again produces:

Φ (L) ⇓ Lε ⇓ Φ (∅) ⇑ Φ (Φ (∅)) ⇓ Lε ⇓ Φ (Φ (L)) .

2We show the converse for the order-preserving case. Suppose Φ is order-preserving, and let L ⇐ L↘ be arbitrary
decision sets. Let ω be an arbitrary location. Now suppose Dω f (L) ⇒ 0. Then, ω ↑ Φ (L) ⇓ Φ (L↘) since Φ is
order-preserving; but ω ↑ Φ (L↘) implies Dω f (L↘) ⇒ 0 by definition of Φ. As a result, Φ is order-preserving
implies that Dω f (L) ⇒ 0 ⇑ Dω f (L↘) ⇒ 0. The proof in the order-reversing case is similar.
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The order-reversing property of Φ guarantees that the new upper bounding set Φ (Φ (L)) is
(weakly) tighter than the previous upper bounding set Φ (∅): note ∅ ⇓ Φ (L) ⇑ Φ (Φ (L)) ⇓
Φ (∅) and similarly, Φ (∅) ⇓ L ⇑ Φ (L) ⇓ Φ (Φ (∅)). Combining the two last steps, we
conclude that

∅ ⇓ Φ (L) ⇓ Φ (Φ (∅)) ⇓ Lε ⇓ Φ (Φ (L)) ⇓ Φ (∅) ⇓ L .

Extending this logic inductively, each repeated application of the squeezing step produces a
tighter bounding pair. Note that this procedure must converge in at most |L| steps since, in
each iteration, at least one location ω must be added to the lower bounding set or removed
from the upper bounding set and there are |L| total locations. A parallel argument, similarly
appealing to the monotonicity of Φ, holds when the objective function satisfies SCD-C from
below.

The following theorem formalizes the result.

Theorem 1. If the objective function f exhibits SCD-C from either above or below, iteratively applying
the squeezing step to the trivial bounding pair [∅, L] yields a sequence of sets

∅ ⇓ . . . ⇓ L(k) ⇓ L(k+1) ⇓ Lε ⇓ L(k+1) ⇓ L(k) ⇓ . . . ⇓ L,

where k indexes the output of the kth application of the squeezing step. The squeezing step always
converges, taking K applications where K ↖ |L|.

We refer to the iterative application of the squeezing step until convergence as the squeezing
procedure, and denote the corresponding operator by SK, so that

[
L(K),L(K)

]
= SK ([∅, L]). If

the converged lower and upper bounding sets coincide, then it must be that L(K) = Lε = L(K),
by definition of a bounding pair. If the two bounding sets are not identical, they nevertheless
define a (weakly) smaller subdomain of the original CDCP,

[
L(K),L(K)

]
, which we refer to as

the reduced domain.

The Branching Procedure: Identifying the Optimal Decision Set We introduce a recursive
branching procedure as a refinement method that identifies Lε on the reduced domain. The
branching step selects a location ω from L \ L, creates two “branches“ defined by the bounding
pairs

[
L ↔ {ω} ,L

]
and

[
L,L \ {ω}

]
, then applies the squeezing procedure to each. Formally,

we define the branching step as follows.

Definition 5 (Branching step). Given a bounding pair
[
L,L

]
and element ω ↑ L \ L, the branching
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[
L,L ↔ {ω}

] [
L \ {ω} ,L

]

[
L↘,L↘ ↔ {ω↘}

] [
L↘ \ {ω↘} ,L↘]

[
L,L

]

[Lε
1,Lε

1 ]
[
L↘,L↘]

[Lε
3,Lε

3 ] [Lε
2,Lε

2 ]

FIGURE 2: AN EXAMPLE PATH OF THE BRANCHING PROCEDURE

This figure shows an example of a tree of subproblems resulting from applying the branching procedure recur-
sively. Convergence on a single branch occurs when the squeezing procedure returns a conditionally optimal set,
indicated by a terminal node. The final output of the full recursive procedure is the collection of all conditionally
optimal sets, in this example

{
Lε

1,Lε
2,Lε

3
}

.

step is defined as

Bω
([
L,L

])
=

{
SK ([

L ↔ {ω} ,L
])

, SK ([
L,L \ {ω}

])}
.

Figure 2 illustrates an example of the branching step’s application: for a given converged
bounding pair,

[
L,L

]
, that resulted from the squeezing procedure, two branches are created

by applying the branching step with ω ↑ L \ L. The branch on the right, which excludes ω,
converges to a bounding pair with identical lower and upper bounds, identifying Lε

1 as the
optimal decision set conditional on excluding ω. If squeezing does not converge to identical
lower and upper bounds, as on the branch including ω on the left, branching recurs. A new
location ω↘ ↑ L↘ \ L↘ is selected among those that remain, creating an additional branch. This
recursive process builds a tree, terminating in a conditionally optimal decision set on each
branch.

We refer to the recursive application of the branching step until global convergence as the
branching procedure and define Λ

([
L,L

])
as the collection of conditionally optimal decision

sets after global convergence. As we discuss in Section 2.3, the collection of decision sets
returned by this recursive procedure turns out not to depend on which locations are selected
for branching, so this definition is without ambiguity. The globally optimal decision set
is the element in Λ

([
L,L

])
that yields the highest value of the objective function, so that

Lε = arg maxL↑Λ([L,L]) f (L) .
The incumbent alternative to branching is to use the “brute force” method of evaluating

the objective function at every element in the reduced domain produced by the squeezing
procedure. Intuitively, the branching procedure applies the squeezing procedure as much as
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possible, yielding to brute force only one location ω at a time. As a result, branching is typically
faster than brute force. In the worst case, the squeezing step eliminates no decision set on any
branch and hence reduces to evaluating the objective function at all elements in the reduced
domain just like brute force. In the Online Appendix, we show that this worst case never
occurs when the objective function satisfies SCD-C from above.

2.3. The Mathematics of Squeezing and Branching
This section explains the mathematical foundation of our squeezing method and formally
connects it to Jia (2008).

Jia (2008), Supermodularity, and SCD-C from Below Jia (2008) introduced the Φ mapping
to the economics literature, in the context of a chain store that chooses a set of store locations.
The paper recasts finding the optimal decision set of store locations, Lε, as finding the fixed
points of Φ, since Φ (Lε) = Lε by construction.3

Crucially, Jia (2008) shows that the mapping Φ is order-preserving when the underlying
objective function is supermodular, as in the chain store application of the paper. When Φ
is order-preserving, the theorem of Tarski (1955) guarantees the existence of well-defined
smallest and largest fixed points, Linf and Lsup, which together form a natural bounding pair
[
Linf,Lsup], since necessarily Linf ⇓ Lε ⇓ Lsup.

The method of Jia (2008) to identify the bounding pair
[
Linf,Lsup] is rooted in Kleene’s fixed

point theorem, which states that iteratively applying an order-preserving map to ∅ always
converges to its smallest fixed point Linf, while applying it to L always converges to its largest
fixed point Lsup.4 In cases where the bounding pair

[
Linf,Lsup] does not identify Lε, Jia (2008)

applies a brute force search on the reduced domain.
In the case of SCD-C from below, our squeezing procedure implements the same method

as Jia (2008). With an order-preserving Φ, the squeezing step simplifies to S
([
L,L

])
=

[
Φ (L) , Φ

(
L
)]

, which is equivalent to applying the Φ mapping separately to the lower and
upper bounding sets. Consequently, the squeezing procedure produces a converged bounding
pair that coincides with the smallest and largest fixed points of Φ, so that SK ([∅, L]) =[
L(K),L(K)

]
=

[
Linf,Lsup].

Our first contribution relative to Jia (2008) is hence to extend the paper’s method beyond
the context of supermodular objective functions by showing that SCD-C from below is the

3The mapping Φ has antecedents in the Operations Research literature on Boolean optimization. It presents a
simple updating rule for decisions based on the discrete analogue of a first order condition (see, e.g., Boros and
Hammer 2002).

4See Stoltenberg-Hansen, Lindström, and Griffor (1994) for an exposition. The fixed-point theorem derives from
results first established in Kleene (1936) and Kleene (1938)—though it was not stated explicitly there—and is
named accordingly.
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necessary and sufficient condition for Φ to be order-preserving.

The Challenges of SCD-C from Above and Fixed Edges Our second contribution is to
develop a solution method that applies when the objective function satisfies SCD-C from above.
The key difficulty in this case is that Φ is order-reversing so that the fixed point theorem of
Tarski (1955), and Kleene’s by extension, does not apply; a smallest and largest fixed point
bounding the optimal decision set may not exist.

This limitation reflects a basic economic feature of negative complementarities. Consider a
firm choosing between two perfectly substitutable production locations, L = {USA, CAN}. If
no other location is active, either has positive marginal value. However, when both are active,
neither does, as each fully substitutes for the other. Applying the algorithm in Jia (2008) yields
Φ (∅) = {USA, CAN} and Φ ({USA, CAN}) = ∅, so iterating from either extreme oscillates
perpetually.

Though repeated application of Φ may not converge to a fixed point with SCD-C from above,
it does result in a different type of convergence which alternates between two sets, as in the
previous example. We refer to such a pair of sets [L,L↘] for which L = Φ (L↘) and L↘ = Φ (L)
as a “fixed edge” of the Φ mapping. The concept of a fixed edge is a strict generalization of the
concept of a fixed point, since if L is a fixed point of Φ, then the “pair” [L,L] is a fixed edge.

Klime! (1981) shows that, though an order-reversing map need not have a smallest and
largest fixed point, it always has a fixed edge

[
Linf,Lsup] that is “extreme” in the sense that

Linf ⇓ L ⇓ L↘ ⇓ Lsup holds for all other fixed edges [L,L↘].5 As a result, the extreme fixed
edge serves as a bounding pair in the same way the smallest and largest fixed point do with
Tarski (1955). With SCD-C from above, the squeezing procedure applied to the trivial bounding
pair converges to the extreme fixed edge of Φ.

The insights in this section imply that the squeezing step S is itself an increasing mapping
whenever the underlying objective function satisfies either of the SCD-C conditions. As a
result, an alternative proof for Theorem 1 follows by applying the theorem of Tarski (1955) and
Kleene’s theorem to S directly.

The above discussion shows that the squeezing procedure converges to [Lε,Lε] if and only
if Lε is the unique fixed point of Φ. On the other hand, the branching procedure collects all the
fixed points of Φ. In particular, the set of conditionally optimal decision sets at the terminal
node of each branch, Λ

(
L,L

)
, is the collection of all the fixed points of Φ. By implication, the

branching procedure results in the same set of conditionally optimal decision sets, regardless
of which items are selected for branching, and collapses to brute force only in the extreme case

5The intuition behind Klime! (1981) is simple. Suppose Φ is order-reversing. Then g ↓ Φ ↙ Φ is order-preserving.
By Tarski (1955), g has a set of fixed points with a smallest and largest element. Any fixed point of g must be such
that Φ (Φ (L)) = L. Then, the pair [L, Φ (L)] together must be a fixed edge of Φ.
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where every set in the reduced domain returned by squeezing is a fixed point of Φ.

2.4. Solving CDCPs for Heterogeneous Agents
We now extend the combinatorial discrete choice framework to a setting with heterogeneous
agents. We consider an objective function f : P (L)⇔ R → R, that maps a set of items L and
an agent type z ↑ R to a scalar payoff f (L, z). Our exposition focuses on single-dimensional
heterogeneity, though our results extend to multidimensional settings (see Arkolakis, Eckert,
and Shi 2023).

In the context of heterogeneous agents, the object of interest is the “policy function” that
maps an agent’s type to its optimal decision set, encoding each agent’s solution to the CDCP.

Definition 6 (Policy Function). The policy function Lε : R → P (L) specifies the optimal decision
set for each type z, so that Lε(z) = arg maxL↑P(L) f (L, z).

In the multinational production setting that serves as our example, the policy function
maps the productivity of a firm to its optimal combination of production locations. This policy
function plays a central role in aggregating firm-level decisions to solve the general equilibrium
of the model. For example, computing the aggregate price index requires integrating the policy
function over the full support of the firm productivity distribution. We now present an
iterative method to recover the policy function for objective functions that satisfy SCD-C and
an additional single crossing differences in type condition.

Single Crossing Di!erences in Type The single crossing differences in type property restricts
how a firm’s productivity affects the marginal value of a location.

Definition 7 (SCD-T). The objective function f exhibits single crossing differences in type if, for all
items ω ↑ L, decision sets L ↑ P (L), and types z, z↘ ↑ R such that z < z↘:

Dω f (L, z) ⇒ 0 ⇑ Dω f
(
L, z↘

)
⇒ 0 .

Intuitively, the SCD-T condition ensures that if, as part of a decision set L, a location ω has a
positive marginal value for a firm of productivity z, then it must also have a positive marginal
value for any firm of higher productivity z↘ > z. If instead the marginal value of ω crosses
zero from above, the problem can be reformulated using the transformation z̃ ↓ ↗z to satisfy
SCD-T.6

6This property corresponds exactly to the single-crossing condition introduced by Milgrom and Shannon (1994),
later referred to as the single-crossing differences condition by Milgrom (2004). The firm type z can represent
any characteristic, endogenous or exogenous, that affects payoffs, and the policy function Lε (z) describes how
optimal choices respond to changes in that characteristic. When z is endogenous, the policy function is often
referred to as a best-response function.
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The squeezing procedure uses the choice monotonicity implied by the SCD-C assumption
to rule out many decision sets without explicitly evaluating their payoff. In a similar way, by
appealing to the type monotonicity afforded by the SCD-T assumption, our method applies the
choice monotonicity implied by the SCD-C restriction to discard many decision sets for entire
ranges of productivity without evaluating the objective at any of these productivities. This
approach is possible because, when the objective function satisfies both SCD-C and SCD-T, the
policy function changes its value only at a finite number of cutoff productivities. As a result,
instead of solving a CDCP for every productivity, it suffices to identify the cutoff productivities
and the constant value of the policy function in between cutoffs.

When f satisfies supermodularity and SCD-T, Milgrom and Shannon (1994) show that the
policy function exhibits a nesting structure: higher productivity firms choose all locations
selected by lower productivity firms and possibly more, so that z < z↘ implies Lε (z) ⇓ Lε (z↘).7

However, SCD-C and SCD-T alone are not sufficient to ensure nesting.

Solving for the Policy Function with SCD-C and SCD-T To solve for the policy function,
we introduce a generalized squeezing procedure. As a first step, we extend the notion of
the bounding pair

[
L,L

]
, associated with the CDCP of a single firm, to set-valued functions

defined over productivities, L (·) and L (·). These “bounding set functions” are such that
L (z) ⇓ Lε (z) ⇓ L (z) for any productivity z ↑ R. Our solution method iteratively tightens
the bounding set functions around the policy function. We refer to

[
L (·) ,L (·)

]
↓ [∅, L] as the

trivial bounding set functions since these constant functions always nest the policy function
for all z.

Any pair of bounding set functions implies a partition of productivities into intervals
with identical lower and upper bounding sets. We define the partition T created by a pair of
bounding set functions

[
L (·) ,L (·)

]
as follows:

T
([
L (·) ,L (·)

])
= {Z1, . . .Zt, . . .ZT}

such that Zt =
{

z ↑ R | L (z) = Lt,L (z) = Lt
}

,

where t indexes the productivity intervals for which the bounding pair functions imply
identical bounding pairs. For brevity, we use T to denote the partition when the pair of
bounding set functions is unambiguous.

Figure 3 illustrates how a pair of bounding set functions partitions the productivity types

7More precisely, Milgrom and Shannon (1994) show that nesting holds under the weaker condition of quasi-
supermodularity, which is stronger than SCD-C as we discuss in the Online Appendix. This result has been
widely used in applied theory and empirical work, including Antras, Fort, and Tintelnot (2017) in their analysis
of firm-level sourcing decisions. It is also reminiscent of the positive assortative decision patterns studied in
Costinot (2009).
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L (·) |
z{USA} {DEU, USA}

L (·) |
z↘∅ {DEU}

T
Z1 :

[∅, {USA}]

|
Z2 :

[∅, {DEU, USA}]

|
Z3 :

[{DEU}, {DEU, USA}]

FIGURE 3: PARTITIONING PRODUCTIVITIES BY COMMON BOUNDING PAIRS

The top line illustrates an example upper bounding set function, while the middle illustrates an example lower
bounding set function. Together, these two set-valued functions imply the partitioning T , which creates intervals
of productivity. In this figure, there are three intervals, so T = {Z1,Z2,Z3}. All productivities within a interval
Zt share the listed bounding pair.

into intervals. The two lines at the top represent the lower and upper bounding set functions,
each changing their values at different cutoffs, z and z↘. The line at the bottom shows the
resulting partition comprised of productivity ranges for which both bounding set functions are
constant. These intervals identify the cutoff productivities at which either the lower or upper
bound changes, and thus determine the set of relevant cutoffs for the policy function.

We now define a generalized version of the squeezing step above.

Definition 8 (Generalized squeezing step). Let C = {c : R → P (L)} be the space of functions
mapping types to decision sets. The generalized squeezing step is the mapping Sg : C ⇔ C → C ⇔ C
defined for any L (·) ,L↘ (·) ↑ C as:

Sg ([L (·) ,L↘ (·)
])

=
[
inf

{
Φg (L (·) , ·) , Φg (L↘ (·) , ·

)}
,

sup
{

Φg (L (·) , ·) , Φg (L↘ (·) , ·
)}]

where the mapping Φg : P (L)⇔ R → P (L) is defined as

Φg (L, z) =
{
ω | z ⇒ zg

ω (L)
}

and the functions zg
ω : P (L) → R are defined as zg

ω (L) = inf {z | Dω (L, z) = 0} for each ω ↑ L.8

When the underlying objective function satisfies SCD-C and SCD-T, the generalized squeez-
ing step applies the logic of the squeezing step from the single-firm case to the full range

8If Dω (L, z) < 0 for all types z, we define zg
ω (L) ↓ ∞. Likewise, if Dω (L, z) > 0 for all types, zg

ω (L) ↓ ↗∞.
Thus, formally, the range of each zg

ω is the two-point compactification of the real line R ↔ {↗∞, ∞}.
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of productivities. In particular, for each productivity value z, Φg (L, z) coincides with Φ (L)
when the objective function is evaluated at z.

The importance of the SCD-T assumption is that it eliminates the need to evaluate marginal
values separately for each productivity level. Instead, for each location ω and decision set L,
there exists a unique productivity cutoff zg

ω (L) that identifies the firm indifferent to including ω

into L. Rather than computing the marginal value of ω at each z, it suffices to check whether a
firm’s productivity lies above or below the cutoff zg

ω (L).
We illustrate how the generalized squeezing step proceeds in practice for an objective

function that satisfies SCD-C from above and SCD-T. Consider a pair of bounding set functions
and the associated productivity partition T . For a given interval Zt ↑ T , we compute the
two cutoffs zg

ω (Lt) and zg
ω

(
Lt

)
for each ω, where the SCD-C and SCD-T conditions together

imply zg
ω (Lt) ↖ zg

ω

(
Lt

)
. Then, for all firms with productivity z < zg

ω (Lt) in Zt, ω is not
part of the optimal decision set, so the upper bounding set function updates to Lt \ {ω}
for these productivities. Conversely, for all firms with productivity zg

ω

(
Lt

)
< z in Zt, ω is

part of the decision set, so the lower bounding set function updates to Lt ↔ {ω} for these
productivities. Figure 3 depicts the outcome of updating the trivial bounding set functions
where z corresponds to zg

ω (Lt), z↘ corresponds to zg
ω

(
Lt

)
, and ω corresponds to DEU. A full

application of the generalized squeezing step requires computing 2 ⇔ |L| cutoffs for each
interval Zt.

When the underlying objective function satisfies both SCD-C and SCD-T, applying the
generalized squeezing step to a pair of bounding set functions always returns a (weakly)
tighter pair of bounding set functions. Iteration of the generalized squeezing step converges
once Sg ([L (·) ,L (·)

])
=

[
L (·) ,L (·)

]
. Since each bounding set can tighten at most |L| times,

the procedure converges in at most |L| applications. The following theorem formalizes this
result.

Theorem 2. If the objective function f exhibits SCD-C and SCD-T, iteratively applying the generalized
squeezing step to the trivial bounding set functions

[
L(0) (·) ,L(0)

(·)
]
= [∅, L] yields a sequence of

bounding set functions so that for all z ↑ R,

∅ ⇓ . . . ⇓ L(k) (z) ⇓ L(k+1) (z) ⇓ Lε (z) ⇓ L(k+1)
(z) ⇓ L(k)

(z) ⇓ . . . ⇓ L,

where k indexes the output of the kth application of the generalized squeezing step. The generalized
squeezing step always converges, taking K↘ applications where K↘ ↖ |L|.

At convergence, the optimal decision set is identified for any interval Z (K↘)
t ↑ T (K↘) where

the bounds coincide, that is, L(K↘)
t = L(K↘)

t = Lε
t . In intervals where the bounds differ, the

generalized squeezing step has converged without identifying the optimal decision set. For
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such cases, we define two refinement methods that always converge to the policy function,
including a generalized branching procedure, in the Online Appendix.

In what follows, we refer to the application until convergence of generalized squeezing
and its refinement as the “policy function method.” In contrast to discretization or bisection
methods, the policy function method uses the monotonicity afforded by the SCD-T restriction
to identify the exact cutoffs at which the policy function changes its value. This approach
eliminates unnecessary computation at non-cutoff productivities. By recovering the exact policy
function, we also avoid the interpolation between productivities required by discretization
methods. Section 5.1 shows that such interpolation can introduce substantial errors in aggregate
variables in the context of a realistically calibrated model of multinational production.

3. A Quantitative Model of Multinational Production
In this section, we introduce a quantitative model of multinational production (MP). We
characterize the firm’s location problem and the economic mechanisms that turn it into a CDCP,
then derive explicit parameter conditions under which SCD-C and SCD-T hold. In the Online
Appendix, we extend the framework to accommodate a broader class of demand and cost
functions.

Setup The world economy consists of a discrete set of countries L. We index firm headquarter
locations by i, production locations by ω, and final consumption locations by n. Each firm
produces a differentiated final good variety ω. Every production location ω has a mass of
households Hω, each of which inelastically supply one unit of labor at wage wω. Labor markets
are perfectly competitive and output markets are monopolistically competitive.

Demand System Consumers in all destinations have identical CES preferences with elasticity
σ over the set of available final goods. Then, the demand function for good ω as a function of
its destination-specific price pn (ω) is

qn (pn (ω)) = Qn

(
pn (ω)

Pn

)↗σ

,

where Qn is the CES consumption basket and Pn its ideal price index. Firms and consumers
take the aggregate objects Qn and Pn as given.

Production Technology Consider a firm headquartered in location i that produces the final
good ω and operates a set of production locations L ⇓ L. The firm has productivity z (ω),
which describes its efficiency of producing good ω in any potential location ω. We index firms
by i and z alone, anticipating that firms with identical headquarter location and productivity
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behave identically.
The firm delivers its final good to destination n by combining production from its locations

ω. The resulting marginal cost of a firm headquartered in location i of delivering a unit of its
output to destination n is given by a constant-elasticity aggregator over the marginal cost of
each of its active production locations:

cin (L, z) =
1
z

[

∑
ω↑L

ε↗ϱ
iωn

]↗ 1
ϱ

where εiωn = γiω
wω

Tω
τωn. (1)

For each production location, wω is the equilibrium wage rate and Tω is an exogenous location-
specific productivity shifter common to all firms producing there. Firms also face a bilateral
cost of multinational production γiω, or MP cost, which captures factors such as communication
or language costs, as well as a bilateral cost of trade τωn. We summarize all cost shifters in a
trilateral resistance term denoted εiωn.

All else equal, the marginal cost in equation (1) increases in wages, MP costs, and trade costs,
while it decreases in firm and country productivity. Crucially, the marginal cost always declines
as the production location set L grows: a firm that operates an expanded set of production
sites has lower marginal cost of supplying its good to any final destination.

The elasticity of substitution across locations, ϱ > 0, captures that the firm may require all
of its locations for production. In the limiting case as ϱ → ∞, the firm uses only its lowest-cost
location.

The elasticity ϱ determines whether there are increasing, constant, or decreasing returns
to additional locations on the cost side. For ϱ > 1, locations are substitutes so that, all else
equal, any additional production location lowers marginal costs by less; on the other hand,
with 0 < ϱ < 1, locations are complements so that any additional production location lowers
marginal costs by more.

Several microfoundations can give rise to the cost aggregator in equation (1). In Appendix A,
we present one based on Fréchet-distributed cost shocks, closely aligned with the frameworks
in Antras, Fort, and Tintelnot (2017) and Tintelnot (2017). In Antras, Fort, and Tintelnot (2017),
final-good firms do not operate sourcing locations themselves or export; instead, they pay
fixed costs to add sourcing partners, each subject to Fréchet-distributed cost shock draws.
The setup in Tintelnot (2017), which is closer to ours, features firms that produce and export
bundles of goods and pay fixed costs to establish plants across locations. The marginal cost of
producing each good at a plant depends on plant-specific Fréchet shocks. While these models
differ in structure, they ultimately deliver the same cost aggregator. Importantly, conditional
on equation (1), the equilibrium of our model implies the same aggregate allocations regardless
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of the specific microfoundation.9

Profit Maximization The profit maximization problem of the firm has two parts: choosing a
set of production locations L and setting the price of its final good in each destination market.
Firms set the price for their final good in destination n as a constant markup over their marginal
cost, cin (L, z), so that

pin (L, z) =
σ

σ ↗ 1
cin (L, z) .

Finally, we turn to the choice of the production location set L. To produce in location ω, a
firm headquartered in i must pay a fixed cost fiω, denominated in location ω production labor.
Without the fixed cost fiω, all firms would produce in all locations ω and there would be no
(combinatorial) discrete choice problem to solve.

The firm headquartered in location i with productivity z chooses the optimal location
decision set Lε (z) to maximize its operating profits:

max
L↑P(L)

πi (L, z) ↓ max
L↑P(L)

{

∑
n

1
σ ↗ 1

qin (L, z) cin (L, z)↗ ∑
ω↑L

wω fiω


, (2)

where qin (L, z) ↓ qn (pin (L, z)) is the demand for the final good in destination market n.
To establish a headquarter in location i, firms first must pay a labor-denominated entry cost

f e
i to draw a productivity z from an exogenous distribution Gi (z). Given their productivity

z, firms with non-negative operating profits produce positive quantities, while firms with
negative operating profits shut down right after paying f e

i .

Aggregation and the Equilibrium System We now turn to aggregation over firms and the
determination of aggregate variables in general equilibrium.

The first equilibrium condition is a zero profit condition that pins down the cutoff pro-
ductivity z̃i below which firms would have negative global operating profits and thus exit
instead:

πi (Lε (z̃i) , z̃i) = 0 . (3)

The second equilibrium condition is a free entry condition that reflects that firms enter
until their expected operating profits before drawing a productivity are zero. The free entry

9In particular, Tintelnot (2017) assumes that the elasticity of substitution within and across firms is identical,
which requires the Fréchet shape parameter to exceed this common elasticity, restricting the problem to the SCD-C
from above case as we discuss below. By allowing the two elasticities to differ, as in our setup, this restriction is
relaxed. The Fréchet distribution can also be replaced by a multivariate Pareto, as in Arkolakis, Ramondo, et al.
(2018). Alternatively, one can microfound the cost aggregator by assuming that firms produce intermediate goods
in each location that are incomplete substitutes, in which case the Fréchet parameter is replaced by the elasticity
of substitution across intermediates, as in Antràs et al. (2024a).
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condition pins down the total mass of entrants Mi in each origin country i by equalizing
the entry cost on the left with the operating profits of the average firm across all destination
markets on the right:

wi f e
i =

 ∞

z̃i
πi (Lε (z̃i) , z̃i)dGi(z). (4)

Price indices in each destination market n aggregate the individual prices of all goods
offered:

P1↗σ
n = ∑

i
Mi

 ∞

z̃i
pin (Lε

i (z) , z)1↗σ dGi (z) . (5)

In addition, the labor market must clear in each production location ω. There are three
sources of labor demand: variable labor requirements from all the production sites operating
in country ω, the entry costs of all the firms headquartered in ω, and the fixed costs incurred by
foreign and domestic firms to set up production in location ω. Labor market clearing equates
the total labor supply in location ω to total labour demand as follows:

wωHω =
σ ↗ 1

σ ∑
i,n

MiXn

 ∞

z̃i

1iω (z) ε↗ϱ
iωn

∑k↑Lε
i (z)

ε↗ϱ
ikn

[
pin

(
Lε

i (z) , z
)

Pn

]1↗σ

dGi (z)

+ Mωwω f e
ω + ∑

i
Miwω fiω

 ∞

z̃i
1iω (z)dGi (z) ,

(6)

where the indicator 1iω (z) ↓ 1
{
ω ↑ Lε

i (z)
}

takes the value 1 if a firm with productivity z from
origin i opens a production location in country ω.10 The term Xn denotes total expenditure on
final goods in destination n.

Lastly, balance of payments requires that total expenditure from consumers in a market n
equals their total income:

Xn = wnHn. (7)

The general equilibrium in our model is defined as follows.

Definition. General equilibrium is a set of policy functions {Li (·)}i and aggregate variables
{wi, z̃i, Mi, Pi, Xi}i so that

1. given the aggregate variables, the policy functions solve firms’ optimization problems in
equation (2); and

2. given the policy functions, the aggregate variables satisfy equations (3)–(7).

Before describing how to quantify the model using data on trade and MP flows, we first
describe how to establish the SCD-C and SCD-T properties in our framework.
10Note that under CES demand, a fraction (σ ↗ 1)/σ of a firm’s total sales are variable production costs; location
ω ↑ Lε

i (z) accounts for a share 1iω (z) ε↗ϱ
iωn/ ∑k↑Lε

i (z)
ε↗ϱ

ikn of these costs.
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Establishing the SCD-C and SCD-T conditions Our model features two forces that generate
interdependencies among the production locations of an individual firm. On the demand side,
the demand elasticity σ indexes the firm’s ability to scale. The larger is σ, the more sensitive
demand is to prices, and hence the more the marginal cost savings of large multinationals
translates into larger sales. All else equal, such returns to scale make each additional location
more valuable, generating positive complementarities among locations. On the cost side,
when ϱ > 1, production locations are substitutes as they compete with one another to supply
any destination (“cannibalization”). However, if 0 < ϱ < 1, locations act as complements in
production. Overall, when ϱ > 1, the cost- and demand-side effects oppose each other; when
ϱ < 1, they reinforce each other.

The model generates a closed-form condition on parameters that determines the type of
complementarities among locations in the firm’s CDCP. As we show formally in the Online
Appendix, negative complementarities dominate and the firm’s profit function satisfies SCD-C
from above iff σ ↗ 1 < ϱ, whereas positive complementarities prevail and SCD-C from below
holds iff σ ↗ 1 > ϱ.

To build intuition for these parameter conditions, consider a symmetric version of our
economy where εiωn = ε. In this economy, the marginal value of location ω is given by:

Dωπi (L, z) = Gzσ↗1

|L ↔ {ω}|

σ↗1
ϱ ↗ |L \ {ω}|

σ↗1
ϱ


↗ wω fiω , (8)

where G is a composite general equilibrium constant and, since all locations are symmetric,
only the number of locations matters, not their precise identity. The cost and demand elasticities
interact to determine the strength and direction of the complementarities among production
locations. Equation (8) shows that if σ ↗ 1 > ϱ, the marginal value of any given production
location ω is increasing in the number of other locations, so that SCD-C from below holds,
indicating positive complementarities. If instead σ ↗ 1 < ϱ, complementarities are negative
and SCD-C from above holds. In the special case where σ ↗ 1 = ϱ, the marginal value of ω is
independent of the firm’s decision set L.11 Finally, SCD-T requires that a location’s marginal
value is higher at more productive firms, which is the case as long as σ > 1.

Equation (8) highlights that firms in our model face a CDCP because of the combination

11In the Online Appendix, we also show how to verify SCD-C and SCD-T for more general marginal cost functions
cin (L, z) of which the cost function in this section is a special case. Our generalized framework nests production
structures as in Ramondo (2014), Arkolakis, Ramondo, et al. (2018), Lind and Ramondo (2023), and Xiang (2022),
that is, production with correlated idiosyncratic shocks across locations, or with multiple different technological
methods of production. In general, regardless of the cost function, the strength of the scale complementarities
depends on how changes in marginal costs translate into differences in variable profits, which is determined
by the elasticity of demand and the pass-through elasticity of costs to price. In the present model, markups are
constant so that the pass-through elasticity is always 1; consequently, only the elasticity of demand matters.
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of two ingredients: complementarities among locations and the fixed costs of setting up
production locations. Without complementarities, that is when ϱ = σ ↗ 1, the marginal value
of any production location is independent of all others and hence the firm faces |L| independent
decisions. Without fixed costs, that is, when fiω = 0 ∝i, ω, the marginal value of all locations is
always positive so that all firms establish production locations in all countries, regardless of
complementarities.

4. Quantification
In this section, we provide an overview of our model calibration, which follows standard
techniques and borrows central parameters from the literature. For use in our quantitative
exercises in Section 5, we calibrate the model twice, once with negative and once with positive
complementarities. We relegate most details of the quantification, such as of the treatment of
the data and the model’s fit, to Appendix C.

4.1. Data
We obtain information on manufacturing trade and multinational production for 32 countries
from Alviarez (2019). For each host country, the data set contains the number of manufacturing
enterprises and their total manufacturing sales by origin country. For example, the data contain
the number of German manufacturing enterprises in France and their total sales. The dataset
also contains bilateral trade flows for all country pairs. For all variables, the data reflect average
values over the period from 2003 to 2012.12

While the dataset contains foreign affiliate counts for each nation, it lacks each country’s
total enterprise count and information on firm entry and survival. To supplement the dataset,
we obtain counts of total enterprises for each country from the OECD Structural Statistics of
Industry and Services dataset, and data on the 1-year survival rates of enterprises in each
country from the OECD Structural and Demographic Business Statistics.

To construct standard bilateral gravity controls, we use the CEPII database (see Conte,
Cotterlaz, Mayer, et al. 2023), which provides measures of geographic distance, a shared
border indicator, a colonial ties dummy, and a common language dummy. In addition, we use
the TRAINS dataset to construct bilateral manufacturing tariff measures, following standard
practices in the literature. Data on real GDP per capita and total employment are drawn from

12To construct the dataset, Alviarez (2019) combined data from the OECD, the Eurostat Foreign Affiliate Statistics
database, the Bureau of Economic Analysis, and Bureau van Dijk’s Orbis dataset. The dataset contains information
on the following countries: Australia, Austria, Belgium, Bulgaria, Canada, the Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Italy, Japan, Latvia, Lithuania, Mexico, the Netherlands, New
Zealand, Norway, Poland, Portugal, Romania, the Russian Federation, Slovakia, Spain, Sweden, Turkey, Ukraine,
the United Kingdom, and the United States.

22



PARAMETER DESCRIPTION VALUE/TARGET MOMENT

Externally Calibrated
σ Demand elasticity Set to 4 (Arkolakis, Ramondo, et al. 2018)

σ↗1
ϱ Location complementarity Set to 2

3 (negative complementarities)
and 3

2 (positive complementarities)

Internally Calibrated
ζ Firm Pareto shape Sales distribution right-tail (Arkolakis 2010)
zi Firm Pareto minimum Total foreign MP (Alviarez 2019)
Tω Location productivity GDP per capita (PWT)
fi Fixed cost (origin

component)
1-year firm survival rate (OECD)

f e
i Entry cost Total enterprise counts (OECD)

Hω Labor supply Employment (PWT)
τωn, γiω, νiω Bilateral trade,

MP, fixed costs
Gravity coefficients on trade flows,
MP flows, affiliate counts (Appendix C.2)

TABLE 1: PARAMETERS AND TARGET MOMENTS

This table summarizes the calibration strategy of the model. Two parameters, σ and ϱ, are externally calibrated;
the remaining are calibrated simultaneously in a single iterative routine that targets the moments described in
the last column. For each empirical moment, we list the data source. PWT refers to the Penn World Tables and
OECD to either the OECD Structural Statistics of Industry and Services dataset or for the 1-year survival rates of
enterprises in the OECD Structural and Demographic Business Statistics.

the Penn World Tables (Feenstra, Inklaar, and Timmer 2015).

4.2. Calibration Strategy
Our calibration strategy uses indirect inference to identify the model’s internally calibrated
elasticities. For a given set of elasticity values, we choose productivity parameters to match
country-specific aggregates in general equilibrium. Once these targets are met, we use the
model’s equilibrium allocations to estimate a set of aggregate gravity regressions and update
the elasticity guesses to match the corresponding coefficients in the data. Since matching
country-level aggregates in general equilibrium is itself an iterative process that requires
repeatedly solving for the policy function, our method is essential to the feasibility of this
approach. Table 1 summarizes the moments targeted by each parameter. Further details are in
the Online Appendix.

Demand Elasticity and Location Substitution Elasticity: σ and ϱ Together, the elasticity of
substitution σ across consumption goods and the elasticity of substitution ϱ across production
locations in the firm’s cost function determine the type of SCD-C condition satisfied by the
firm location problem. In our baseline calibration, we follow Arkolakis, Ramondo, et al. (2018)
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and set σ = 4.13

We calibrate the model twice, with two different values for ϱ, to conduct quantitative
exercises with both negative and positive complementarities. For the negative complementarity
calibration, we follow Arkolakis, Ramondo, et al. (2018) and set ϱ = 4.5. Combined with the
value for σ, the degree of complementarity is σ↗1

ϱ = 2
3 . For symmetry, we set ϱ in the positive

complementarity calibration so that σ↗1
ϱ = 3

2 .

Country Productivity Parameters and Fixed Costs We assume that the firm productivity
distribution Gi (z) is Pareto with shape parameter ζ and minimum zi which is specific to each
headquarter country i. The model generates a firm sales distribution with a Pareto tail of
ζ/ (σ ↗ 1), so we set ζ = 1.65 ⇔ (σ ↗ 1) to match the tail estimate presented in Arkolakis
(2010).

The model features two vectors of country-specific productivity terms: the minimum of the
firm Pareto distribution, zi, which acts as a location-of-headquarter productivity shifter; and
the location-of-production productivity shifter, Tω. We choose the first to exactly match the
share of global foreign production attributable to firms headquartered in i, and the second to
exactly match the observed GDP per capita for each country.

For the calibration, we decompose the fixed cost of setting up a production location in ω for
firms headquartered in location i into an origin-specific shifter and a bilateral term, fiω ↓ fiνiω.
For a given entry cost f e

i , we choose the base component of fixed costs fi to match the share of
“surviving” firms whose productivity draw exceeds the cutoff level defined by the zero profit
condition in equation (3). In a second step, we recover the entry cost f e

i by inverting the free
entry condition in equation (4) so that the model matches the implied number of entering firms
observed in the data, which we calculate as the number of enterprises divided by the survival
rate. We set total labor supply in each location, Hi, to match total employment in each country.

Trade Costs, MP Costs, Fixed Costs In the theory, three bilateral cost matrices shape the
patterns of trade flows, foreign affiliate sales, and foreign affiliate counts across country pairs:
the matrix of trade costs {τωn}ωn, the matrix of MP costs {γiω}iω, and the matrix of the bilateral
components of fixed costs {νiω}iω. To calibrate these parameters, we use data on trade flows,
MP flows, and bilateral affiliate counts as indicated in Table 1.

13Our choice of σ falls within the range of estimates of Broda and Weinstein (2006). Arkolakis, Ramondo, et al.
(2018) show that it is also consistent with markup estimates from the manufacturing sector. Moreover, our value
is similar to the estimate of σ = 3.89 from Head and Mayer (2019). While Head and Mayer (2019) focuses on
multinational production in the car industry, their estimation strategy is consistent with our theoretical setup and
also generates markups in line with the microeconomic estimates from the car industry in Goldberg (1995) and
Berry, Levinsohn, and Pakes (1995). Finally, our choices of ϱ generates a trade elasticity of 2.7. Head and Mayer
(2014) report a median estimate of the trade elasticity of 3.19 and a mean of 4.51 based on a meta-analysis of 32
papers.
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We follow Tintelnot (2017) and parameterize the three matrices {τωn, γiω, νiω} as constant
elasticity functions of the standard bilateral gravity variables: geographic distance, a shared
colonial past indicator, a shared language indicator, and a common border indicator. We
specify a separate elasticity for every gravity variable in each of the three matrices, leading
to a total of twelve elasticities to estimate. We present the expressions for each element of
the bilateral cost matrices in Appendix C.2.14 We then choose the elasticities of the various
gravity variables in the bilateral cost matrices using an indirect inference procedure. We specify
three gravity equations, for the trade flows, MP flows, and bilateral affiliate counts both in
model and data and choose the elasticities of the gravity variables in the model to match the
regression coefficients found in the data.

5. Quantitative Exercises and Counterfactuals
In this section, we use our quantified model to conduct a number of numerical exercises
illustrating the performance of our solution method. We also use our model to measure the
welfare gains from multinational production, in particular analyzing how they differ under
negative or positive complementarities and in settings with or without fixed costs.

5.1. Computational Performance
We conduct three different numerical experiments, demonstrating advantages of our solu-
tion method in terms of computational speed, precision, and breadth of applicability. For
experiments that vary the number of countries, we sample from the the cost and productivity
parameters of our calibrated model to generate synthetic countries.15

Speed We compare the speed of our policy function method (“Policy”) against two alternative
discretization approaches on a grid of 214 ′ 16000 grid points: the “naive” approach which
uses brute force to solve the CDCP at each grid point by evaluating profits for all possible
location combinations and the “squeezing” approach which applies the squeezing procedure at
each grid point until convergence, then brute force to the reduced domain. Unlike our “policy”
method, these two grid-based approaches generate discretization error in the computed policy
functions.

Table 2 reports the time (in seconds) required to compute the policy function across varying
numbers of synthetic countries. We compute Lε

i (z) for firms from each origin i and report
the average time across origins. The naive method requires more than an hour even with

14For any bilateral pair without MP activity in the data, we set γiω = ∞.
15A synthetic country is described by fundamentals {Tω, fi}, aggregates {wω, Pω}, and bilateral costs {τωn, γiω, νiω}.
For each of these objects, we non-parametrically fit a distribution to the estimated values from which we then
sample to generate synthetic countries.
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Negative Complementarities Positive Complementarities

Countries Naive Squeezing Policy Naive Squeezing Policy
(1) (2) (3) (1) (2) (3)

8 8 0.423 0.019 7 0.480 0.034
16 5454 2.261 0.039 4356 2.364 0.087
32 – 11.093 0.107 – 13.217 0.186
64 – 66.001 1.323 – 94.459 1.293
128 – 456 14.061 – 795 14.702
256 – 3239 331 – 6479 374

Grid points 214 214 – 214 214 –

TABLE 2: RUNTIMES FOR DIFFERENT SOLUTION METHODS

This table illustrates the computational time in seconds for computing the firm policy function by discretizing
firm productivity, then solving the firm’s CDCP at each grid point by (1) evaluating the profit function for all
possible production location combinations (“Naive”); or (2) applying squeezing, then brute force (“Squeezing”).
We contrast these methods with our policy function method (“Policy”) which does not require discretization. We
repeat the exercise in both the calibration with negative and positive complementarities. Synthetic countries are
generated by sampling from the distribution of parameter estimates obtained from the calibrated model. We then
time how long it takes to solve for the policy functions Lε

i (·) for all origins, and report the average time taken
across origins. Trials were computed on an Apple M1 (2020) CPU.

just 16 countries, while the policy method solves the same problem in less than a tenth of a
second. Even for 128 countries, the policy method recovers the average policy function in
under 15 seconds, while it takes about 6 minutes to compute the average policy function with
256 countries.

In the case of positive complementarities, the squeezing method corresponds to the incum-
bent approach pioneered by Antras, Fort, and Tintelnot (2017), and our policy function method
is roughly an order of magnitude faster across all country counts. For negative complementari-
ties, the naive brute-force approach represents the benchmark, and our method improves on
it by four orders of magnitude. Approximately three-quarters of the speed gains come from
extending the squeezing method of Jia (2008) to the negative complementarity case, and the
remaining quarter from introducing our policy function method, which avoids solving the
CDCP at every grid point.

Precision Table 2 understates the performance gap between the policy method and the
alternative approaches, as it does not account for the discretization error inherent in the latter.
Discretization error arises because outcomes must be interpolated between grid points, so
that selecting the number of grid points involves a trade-off between computational time and
discretization error.
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Our policy function method solves for the exact policy function, allowing us to quantify
the discretization error of other methods. To do so, we first compute the total value of trade
flows from origin i to destination n via production in country ω, denoted Xiωn, by aggregating
over the exact policy function. Then, we compute the corresponding approximation X̂iωn by
aggregating over the discretized policy function of the “Squeezing” method, interpolating
between grid points. We define the discretization error as the average percentage deviation of
flows across all country triplets, that is, N↗3 ∑i,ω,n

X̂iωn/Xiωn ↗ 1
⇔ 100%.

Figure 4 graphs the discretization error against computational time for varying grid densities
and both types of complementarities. Each line shows the precision-time frontier for a different
number of countries. With 512 grid points and 8 countries, computation is fast, but the
average discretization error exceeds 40% regardless of the type of complementarity. Even
with over 16000 grid points, the error remains above 20% in both cases. Doubling the number
of grid points reduces the error by 5 to 10 percentage points but doubles the computation
time. As the number of countries increases, the frontier shifts rightward at a log-constant
rate, reflecting the polynomial complexity of the generalized squeezing procedure. With
negative complementarities, average discretization error increases in the number of countries.
By contrast, it decreases with positive complementarities, since the nesting structure of the
policy function mitigates discretization error.

Wide Applicability In a final exercise, we examine how computational time depends on the
strength and direction of complementarities, summarized by the ratio (σ↗ 1)/ϱ. We recalibrate
the 32-country model (following Section 4) for values of ϱ ranging from 0.8 to 20, yielding
(σ ↗ 1)/ϱ values between 0.15 and 3.9. This range extends substantially beyond the strength
of complementarities suggested by estimates of ϱ and σ in the literature and notably also
includes cases where 0 < ϱ < 1, so that production locations are complements in the firm’s
cost function.

The left panel of Figure 5 shows the average time required to solve for the policy function
across origin countries, using our policy function method for every level of complementarity.
The figure also shows the fraction of the total computational time spent using the squeezing
method. Across the range of complementarities, our policy function method takes under 0.26
seconds. Computation is fastest near the vertical line, which marks the special case of no
complementarity, where production locations are effectively independent. As the degree of
complementarity increases in either direction, computation time increases but never more than
doubles.

Our theoretical results help explain the patterns in the left panel. Theorem 2 establishes that
the generalized squeezing method never takes more than |L| applications, consistent with little
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(A) Negative Complementarities (B) Positive Complementarities

FIGURE 4: THE PRECISION-TIME FRONTIER WITH DISCRETIZATION METHODS

This figure illustrates the discretization error in computing the policy function with the “Squeezing” approach,
for different numbers of countries. To measure discretization error, we compute the percentage deviation for
each trilateral flow Xiωn, when using the discretized policy function compared to the true policy function. In
particular, we compute the average discretization error as N↗3 ∑i,ω,n

X̂iωn/Xiωn ↗ 1
⇔ 100%, where Xiωn are the

sales of location ω production sites, whose headquarters are in location i, to destination market n computed using
the “Policy“ method (that is, the exactly solved model) and X̂iωn is the same object in the model computed using
the “Squeezing” method. Trials were computed on an Apple M1 (2020) CPU.

variation in squeezing time across the full range of complementarities.
The right panel shows a proxy measure for the effectiveness of the squeezing procedure:

the number of locations which separate the upper and lower bounding set averaged across
all firms and countries after convergence of the generalized squeezing procedure. In general,
there are very few locations separating the bounding sets after convergence. At the same time,
the average number of leftover locations increases with stronger complementarities, consistent
with the increasing gap between squeezing and total time in the left panel as complementarities
grow stronger.

5.2. CDCPs and the Welfare Gains from Multinational Production
Complementarities among production locations, together with the fixed costs of setting them
up, give rise to the CDCP in our model. An alternative modeling approach is to abstract from
either complementarities or fixed costs to avoid solving CDCPs. In this section, we examine
how the welfare gains from multinational production depend on the presence of both forces.

To quantify the role of these assumption for the welfare gains from multinational production,
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(A) Compute Time (s) (B) Average Value of
L(K↘)

(·) \ L(K↘) (·)


FIGURE 5: COMPLEMENTARITIES AND COMPUTATIONAL PERFORMANCE

This figure shows the performance of the policy function method with different degrees of complementarity. The
strength of complementarity is measured by the ratio σ↗1

ϱ /


1 + σ↗1
ϱ


, and varied by changing ϱ while holding

σ = 4 fixed (its value in the baseline calibration). The vertical line indicates the case with no complementarities,
with σ↗1

ϱ = 1. The panel on the left shows the total policy function method computation time in seconds as well
as the time spent on generalized squeezing in particular. The right panel shows the number of locations which
separate the upper and lower bounding set, averaged across all firms and countries, after convergence of the
generalized squeezing procedure. Trials were computed on an Apple M1 (2020) CPU.

we extend the welfare formula in Arkolakis, Costinot, and Rodríguez-Clare (2012) to the context
of our model with both complementarities and fixed costs.16 The following equation describes
the welfare impact in country i of imposing trade or MP autarky by setting the respective
bilateral costs to infinity:

ln
ŵi

P̂i
= ln π̂

↗ 1
σ↗1

iii  
openness

+ ln M̂
1

σ↗1
i + ln ˆ̃z

↗ ζ
σ↗1

i  
varieties

+ ln ˆ̃zi + ln



 ∑
Z t

i ↑Ti

λt
iii
(
st

iii
) σ↗1

ϱ ↗1





1
σ↗1

  
average productivity

(9)

where x̂ = x↘/x and x denotes the value of a variable in our baseline calibration and x↘ its
value under autarky. We denote by πiii the fraction of all final spending in i on goods produced

16We derive this welfare formula in Appendix A under the assumption that, in the initial equilibrium, all active
firms include the headquarter location in their optimal set of production locations. This assumption holds in all
numerical exercises.
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in i by firms headquartered in i. This own share is an inverse measure of openness of i to both
trade and multinational activity. Mi is the mass of entrants in location i and z̃i is the survival
productivity cutoff in location i for firms headquartered in i. The policy function Lε

i (·) induces
a partitioning Ti =

{
Z t

i
}

t, so that Lε
i (z) = Lt

i for all z ↑ Z t
i . Out of all sales in i by firms from

i in interval t, the term st
iii denotes the share that is produced in i so that st

iωi sums to 1 across
production locations ω, within each interval t. Out of total sales in i by firms from i produced
in i, λt

iii denotes the share accounted for by firms in interval t, so that λt
iii sums to 1 across all

intervals t.
Equation (9) shows that the welfare effects of moving to trade or MP autarky work through

three channels: first, a standard openness channel that captures a reduction in real consumption;
second, a varieties channel that adjusts for changes in the number of domestic varieties; and
third, an average productivity channel that adjusts for changes in the average productivity with
which domestic goods are produced.

Since trade and MP autarky shift inward the effective production possibility frontier of all
countries, the openness channel is typically negative. The signs of the variety and productivity
channels, however, tend to depend on the degree to which countries are headquarter locations
for multinationals compared to host countries for the foreign affiliates of multinationals
headquartered abroad.

The variety effect reflects that both trade and MP autarky shrink the profits of previously
large firms engaged in these foreign activities. The resulting reduction in local wages allows
the selection cutoff to fall and more local firms to survive, creating new varieties that benefit
welfare. Relative to the no-complementarity case, firms engaged in MP are on average larger
and more profitable in the positive complementarity case than in the negative complementarity
case, since complementarities directly shape both the marginal cost advantage attainable
through MP and the market size advantage attainable through trade. As a result, in the case of
positive complementarities, the variety effect is more positive compared to the case of negative
complementarities.

The average productivity channel captures both extensive and intensive margin effects of
the move to autarky. On the extensive margin, average firm productivity declines because the
entry threshold shifts downward ( ˆ̃zi < 1), allowing lower-productivity firms to survive. On
the intensive margin, captured by the last term in the expression, the sales-weighted average
productivity of operating firms changes as relative firm sizes adjust. When locations are
complements (σ ↗ 1 > ϱ), the most productive firms in each origin country i shrink the most,
as they lose the scale economies that previously amplified their productivity advantage and
supported their large domestic market share. As a result, reallocation among incumbents
in the domestic market implies that the sales-weighted average productivity declines and
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FIGURE 6: WELFARE CONSEQUENCES OF IMPOSING MP AUTARKY

This figure shows the log point welfare change (100 ⇔ ln
(
ŵi/P̂i

)
) from moving from the calibrated economy to

MP autarky as pink outlines. In addition, the figure decomposes the welfare changes into the contributions from
changes in openness, changes in the number of available varieties, and changes in average productivity from
equation (9). The left bars are for the calibration with negative complementarities, and the right bars with positive
complementarities. The countries are ordered by the size of the total welfare effect in the positive complementarity
calibration.

the intensive margin effect is always negative. By contrast, when locations are substitutes
(σ ↗ 1 < ϱ), the most productive firms expand relative to other firms in the domestic market,
as they substitute foreign production with domestic production. Thus, the sales-weighted
average productivity increases and the intensive margin effect is always positive.

We now use the two calibrations of our model to study the welfare consequences of moving
to MP autarky with negative versus positive complementarities. We focus on MP autarky
because it highlights the role of multinational location choices with complementarities and fixed
costs, that our new solution methods make tractable. Figure 6 shows the total welfare change
of moving to MP autarky in our calibrated models in pink while the blue bars decompose the
total effect into the three channels of equation (9). Countries are ordered by the size of the total
welfare effect in the calibration with positive complementarities. For each country, the left bars
show results from the calibration with negative complementarities while the right bars show
results from the calibration with positive complementarities.

Figure 6 shows that the vast majority of countries suffers negative welfare consequences
from removing multinational production. Effects range from reductions in welfare of 20 log
points for productive and open economies like the Netherlands, to negligible changes for some
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less productive and less open economies like Turkey. In general, the effect is less negative
with negative complementarities compared to positive complementarities. For some less
productive countries, such as Bulgaria, the opposite is true: with positive complementarities,
there are welfare gains from moving to MP autarky while there are welfare losses under
negative complementarities.

The countries on the left in Figure 6 are the main benefactors of multinational production:
these are small, productive, and open economies in which many multinationals are headquar-
tered. In these countries, like all countries, the openness channel decreases real consumption
in the move to MP autarky. Moreover, their most productive firms lose the marginal cost
advantages from multinational production, lowering average productivity substantially, espe-
cially with positive complementarities. In fact, some of these countries actually lose varieties,
indicating that the low marginal costs attainable through foreign production were central in
enabling firms with low productivity draws to make a positive profit; once these marginal
cost advantages are no longer available, the number of surviving profitable domestic varieties
shrinks.

By contrast, the countries on the right are small, low-wage locations with few domestic
firms productive enough to engage in multinational production. Instead, they serve primarily
as the production sites of productive firms headquartered elsewhere. The openness channel
implies real consumption declines as the world production possibility shifts in and prices
increase. However, these losses are offset by a positive variety effect: the labor released by
departing multinationals crowds in the creation of new domestic varieties. The variety effect is
stronger with positive complementarities, since multinational firms lose more of their marginal
cost advantage when constrained to domestic-only production, shrinking and releasing more
labor in the process. The average productivity effect is small for these countries, since the fact
that so few domestic firms engage in multinational production implies that the term in square
brackets is close to 1 as st

iii ′ 1 for all t. In turn, because relative firm sizes change little, the
productivity cutoff remains (almost) unchanged and released labor predominantly increases
entry.17

Overall, our analysis shows that calibrating the model with different types of complemen-
tarity to the same data yields substantially different welfare effects of MP autarky, with sign
reversals in some cases.

Fixed costs are also essential: without fixed costs of establishing production locations, ˆ̃zi = 1,
and all firms produce in all countries. In this case, since all firms are affected symmetrically,

17If no domestic firm engages in multinational production, the distribution of domestic firms can be described by
a representative firm as in the closed economy of Melitz (2003). In this case, as a consequence of CES demand
together with Pareto productivity, changes in MP costs cause no reallocations among firms, so that the productivity
of the representative firm does not change.
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the term in square brackets collapses to a common share siii that captures labor reallocation
between variable production and firm entry. In calibrations without fixed costs, welfare
losses from MP autarky are substantially larger for nearly all countries, with either level of
complementarity (see Figure 12 in the Online Appendix). Intuitively, with fixed costs, the
retreat of multinational activity frees up labor that can be reallocated to the creation of new
domestic varieties, partially offsetting the welfare loss. Thus, models that abstract from fixed
costs tend to overstate the welfare losses from MP autarky.

In sum, our results suggest that modeling complementarities in location decisions—together
with fixed costs—is crucial for quantitatively evaluating counterfactuals involving multina-
tional production.

6. Conclusion
We introduce a method to solve combinatorial discrete choice problems with either negative
or positive complementarities, and across heterogeneous agents. We apply it to a quantita-
tive model of multinational production in which heterogeneous firms choose sets of foreign
production locations. Our approach allows us to solve and calibrate the model in general
equilibrium with many locations. The calibrated model shows that complementarities and
fixed costs—central to the firms’ combinatorial problem—are also critical for evaluating the
gains from multinational production. Gains are larger with positive than with negative com-
plementarities, and smaller when fixed costs are included. Models that abstract from these
features may misstate the effects of disruptions that affect the cost of multinational production.

Beyond multinational production, our methods apply to a broad range of problems with in-
terdependent discrete choices, for example in the context of discrete infrastructure investments,
supply chain formation, or the location decisions of multi-establishment firms. By making
such problems computationally tractable, our approach expands the frontier of applied general
equilibrium analysis and enables counterfactuals that were previously deemed infeasible.
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A. Counterfactual welfare
The trilateral sales in the model are given by
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n

∑Z t↘
i ↑T ↘

i
1t↘

iωε
↘↗ϱ
iωn

(
Θt↘

in
) σ↗1

ϱ ↗1


zt+1↘
i

σ↗1↗ζ
↗

(
zt↘

i
)σ↗1↗ζ



∑Z t
i ↑Ti

1t
iωε

↗ϱ
iωn

(
Θt

in
) σ↗1

ϱ ↗1


zt+1
i

σ↗1↗ζ
↗

(
zt

i
)σ↗1↗ζ

 .

Computing the counterfactual change in Xiii derives the welfare formula. To do so, we adopt
the following assumption for the remainder of the section.

Assumption. Model fundamentals are such that, in the baseline equilibrium, it is the case that
1ii (z) = 1 for all z ⇒ z̃i, that is, all active firms establish production in their country of origin i.

This assumption guarantees that no firms produce in foreign locations but not domestically.
With either MP or trade autarky, the change simplifies to
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The first is the share of production, sold in i and produced by interval Z t
i , that takes place

in location ω compared to other locations. The second is the share of production Xiii that is

i
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accounted for by interval Z t
i . Using the fact that ε̂1↗σ

iii = ŵ1↗σ
i , then rearranging, we arrive at
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B. Input Microfoundation for CES Marginal Cost
In this section, we lay out a microfounded motivation for the CES marginal cost function
employed in the main body of the paper that follows Antras, Fort, and Tintelnot (2017).

Firms produce their final good by combining a continuum of firm-specific intermediate
inputs, indexed by υ, with a constant elasticity of substitution η. Each of the firm’s production
locations can produce the entire continuum of intermediate inputs.

For a firm headquartered in location i, the marginal cost of producing an input variety υ at
a production site in location ω is given by γiωwω/ϕω(υ), where ϕω(υ) is a location-input-specific
productivity shock and γiω is a bilateral cost of multinational production. For each destination
n and intermediate input υ, the firm chooses from among its set of production sites, L, the
location ωεin(ϕ(υ)) that offers the lowest destination-specific marginal cost:

ωεin(ϕ(υ)) = arg min
ω↑L

γiω
wω

ϕω(υ)
τωn,

where the term τωn denotes a bilateral iceberg trade costs and the vector ϕ(υ) = {ϕω(υ)}ω
collects a firm’s productivity of producing input υ in every location ω.

Suppose the firm draws each of the productivity terms ϕω(υ) independently from a Fréchet
distribution with shape ϱ and scale Tωz, after making its production location decision L. Then,
the Fréchet distribution on idiosyncratic location draws implies the CES cost function used in
the main body of the paper, up to a constant of integration. The substitutability among plants
derives from the fact that plants cannibalize one another’s sales as they compete to be the least
cost supplier. The strength of this force depends on how much production locations differ
in their productivity at producing any given variety as measured by the dispersion (1/ϱ) of
the location-input-specific productivity shocks. If comparative advantage differences among
production locations are large (1/ϱ is large), the substitutability across locations is low and
cannibalization is limited.

The properties of the Fréchet distribution imply that the expression in equation (1) is
independent of the elasticity of aggregation across varieties η (see Eaton and Kortum 2002). A
similarly tractable expression arises if, instead of the independent Fréchet distributions, each
location-input-specific productivity shock is drawn from a multivariate correlated Fréchet
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or Pareto distribution with shape ϱ and correlation ρ as in Ramondo (2014) and Arkolakis,
Ramondo, et al. (2018). Integrating across inputs delivers the CES cost function in (1), with ϱ

replaced by ϱ
1↗ρ .

C. Data and Calibration
In this section, we discuss our data construction in more detail and provide additional infor-
mation about the calibration.

C.1. Data
Trade, Foreign A"liate Sales, and Foreign A"liate Counts We use the data set compiled by
Alviarez (2019) for our bilateral flow data. The data set combines information from four major
databases: OECD International Direct Investment Statistics and the Statistics on Measuring
Globalization; Eurostat Foreign Affiliate Statistics database; Bureau of Economic Analysis
(BEA) public data; and Bureau van Dijk’s Orbis dataset. All values in the data set are averages
from 2003 to 2012; accordingly, in all other data sets we use in the calibration, we also take
average values over the same period.

The data contains information for the following set of 32 countries for nine sectors. While
we keep all the countries, we collapse all data across manufacturing industries to obtain
manufacturing sector totals. For all combinations of these countries and sectors, the data
contains the value of trade flows. We construct home absorption by summing a country’s total
export sales and subtracting them from the total sales of the sector in the country to obtain
sales to the domestic market. Using these home sales, we can then construct home trade shares.

In addition, for each such origin-destination-sector triplet, the data contain the total sales
of foreign affiliates, e.g. the total sales of Canadian companies located in Germany; note that
there is no information on the destination countries of foreign affiliates in a given country, i.e.
the data set does not report how much Canadian companies in Germany are selling to Greece.
We construct sales of a country’s domestic firms at home to destinations anywhere in the world
by taking the total sales of all firms in the country and subtracting the total sales by foreign
affiliates of other countries done in the country. Using these home sales, we can construct the
complete matrix of (inward and outward) MP.

Lastly, the data contain information on the total foreign affiliates for each country-sector
pair. The data do not contain information on the total domestic enterprises. We bring in data
on the average number of total enterprises in each country between 2003 and 2012 (see below).
We then subtract the total number of foreign affiliates operating in a country from the total
number of enterprises and interpret the difference as the number of domestic enterprises or
“headquarters” in our model. We can then once again compute the entire matrix of (inward
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and outward) MP enterprise shares for all country combinations.

CEPII Data We use the standard set of gravity variables from the CEPII database (see Conte,
Cotterlaz, Mayer, et al. 2023) with minor modifications. As our distance measure, we use the
simple distance between countries’ most populated cities, measured in kilometers. To generate
our colonial dummy variable, we combine the “colonial sibling” dummy, which indicates if
two countries had a past common colonizer, and the “colonial dependence” dummy, which
indicates if one country ever colonized the other from the CEPII data into one “colonial
relationship” dummy. We also use the two dummy variables that indicate for every country
pair whether it shares a border or an official language.

TRAINS Tari! Data We use information on tariffs from the TRAINS dataset for 2003–2012.
This database reports the MFN (most favored nation) tariff rates for over 5,000 HS6 goods
categories and country pair combinations. The data also contain information on preferential
trade agreements and their postulated rates. We drop observations for which trade is subject to
non-ad valorem (specific or nonlinear/compound) tariffs. For these tariffs, TRAINS reports ad-
valorem equivalents. However, computation of these equivalents requires data on quantities,
which are often noisy and could also endogenously respond to changes in tariffs. Since most
MFN tariffs are ad valorem, the impact of dropping these observations for our sample size is
small. For each country and HS pair, we take the minimum of the MFN and preferred rate,
and then we take an unweighted average of the resulting tariffs across all HS codes in the
NAICS-33 (manufacturing) sector and all years for which the tariffs are not missing.

We do several robustness tests for our tariff data: First, we use MFN tariffs since, at times,
even if a preferred agreement is in place, firms trade using MFN rates since trading subject to
preferred rates may require extra efforts for firms, e.g. additional forms to fill out. Second, we
experiment with the weighting of HS goods and construct a weighted tariff for manufacturing
that is weighted by the goods share in world trade in that year. Third, we use the information
on applied rates, which is available for goods traded in positive quantities only. We assign
the applied tariff to a good-country pair if available and otherwise assign the minimum of
MFN and preferred rate. None of these alternative measures alters our quantitative results
significantly.

OECD Enterprise Data We obtain information on the number of enterprises active in each
country from the OECD Structural Statistics of Industry and Services for OECD and non-OECD
countries. We also extract additional data from the National Statistical Agencies for Ukraine,
Mexico, and Russia, for which the OECD data lacks information.
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OECD Survival Statistics We also use the OECD Structural and Demographic Business
Statistics database to obtain information on the 1-, 2-, 3-, 4-, and 5-year survival rates of
manufacturing enterprises in many countries and years. The data is missing for some year and
country combinations. We impute the missing survival rates by running a regression of log
survival rates on the log of GDP, total employment, total population, and year and survival
rate horizon fixed effects. We then use the estimated coefficients to predict the missing survival
rates. In our baseline calibration, we use the 1-year survival rates since they correspond most
closely to the idea of businesses that pay an entry cost to learn their productivity but then
never end up producing positive quantities.

Penn World Tables We use the PWT 10.01 version of the Penn World Tables (see Feenstra,
Inklaar, and Timmer 2015). We extract the total “expenditure side real GDP in chained PPPs in
millions of 2017 dollars between 2003 and 2012. Likewise, we extract the total employment
and total population of each country in each year.

C.2. Calibration
In this section, we provide more detail on the calibration of our model.

Bilateral Costs of Trade, MP, and A"liates We estimate the following empirical gravity
equation for each bilateral flow indexed by x ↑ {τωn, γiω, νiω}: trade flows, inward MP sales,
and inward affiliate stocks.

yx
ij = exp



αx + ∑
v↑{d,COL,COM,BOR}

βx
vvij + δ↘xXij +⊋i + ζ j



+ εx
ij (10)

The gravity variables, indexed by v, are the log distance dij between countries i and j, and
dummies for colonial relations (COL), common language (COM) and common borders (BOR).
The vector Xij contains additional gravity controls, in particular bilateral tariffs and a free trade
agreement dummy. The terms ⊋i and ζ j are origin and destination specific fixed effects.

Table 3 presents results for the gravity variables coefficients that we target in calibration,
omitting untargeted coefficients for conciseness. We estimate equations via Poisson Pseudo
Maximum Likelihood (Silva and Tenreyro 2006) as well as OLS, where the estimated elasticities
are in line with those of similar regressions in Ramondo, Rodríguez-Clare, and Tintelnot (2015).
In computing manufacturing tariffs, it is necessary to decide whether to use raw averages of
the tariffs of all goods in manufacturing or weight in some way. For robustness, we report
results using both unweighted and weighted tariffs.
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We specify the following functional forms of the bilateral trade, MP, and fixed costs:

log τωn = τn ⇔ 1 [ω ≃= n] + ∑
v↑{d,COL,COM,BOR}

κv
τvωn + log(1 + tωn)

log γiω = γω ⇔ 1[i ≃= ω] + ∑
v↑{d,COL,COM,BOR}

κv
γviω

log νiω = νω ⇔ 1[i ≃= ω] + ∑
v↑{d,COL,COM,BOR}

κv
ν log viω

(11)

where v indexes the same set of gravity variables as in the regression (10). The {τn, γω, νω}
components represent the costs of doing an activity across borders versus within borders.
In our calibration procedure, we estimate the destination-specific components {τn, γω, νω}
by targeting the own-shares of each activity, and the gravity-variable-specific elasticities by
targeting the estimated coefficients on the corresponding gravity variables in Table 3a using
unweighted tariffs. Table 7a reports the estimated elasticities.

Figure 7b shows histograms of our calibrated trade costs, MP costs, and the bilateral compo-
nent of fixed costs; we exclude the diagonal entries of all cost matrices from the histogram since
they are normalized to 1. Our estimated trade costs are substantial, similar to prior estimates
from studies featuring trade and multinational production (e.g. Ramondo and Rodríguez-Clare
2013).

In contrast, our estimated MP costs are small compared to previous studies such as Ramondo
and Rodríguez-Clare (2013) or Arkolakis, Ramondo, et al. (2018). These differences arise from
the fact that we allow for fixed costs in addition to MP cost. We use affiliate count data to
separate fixed costs from MP cost, while previous studies that only use MP sales and trade
data cannot separate these two costs. In the data, there are few MP affiliates, but they account
for a large sales volume in their host countries; to match these patterns, we estimate large fixed
costs and therefore smaller MP costs. The presence of economically significant fixed costs is
in line with Hjort, Malmberg, and Schoellman (2022), which finds that, in real terms, labor
compensation of middle management is both an important component of the cost of doing
multinational business abroad and also does not vary much across MNE locations.

In the Online Appendix, we regress our estimates of the MP costs and the bilateral compo-
nent of the fixed costs on our set of gravity variables to understand their determinants. For the
bilateral component of fixed costs, we find a large positive coefficient on language, consistent
with evidence of language barriers in foreign MNE activity by Guillouët et al. (2024). Our cost
estimates are also consistent with the finding in Alviarez, Cravino, and Ramondo (2023) that
within-destination market firm market shares for manufacturing decline relatively little with
distance. In particular, MP costs, which are the main determinant of within-destination market
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shares in our model, react little to distance in our calibrations.

Model Fit Figure 8 presents our calibrated model’s performance on an important untargeted
moment: the US sales premium of multinational firms based in the US. We calculate the
average sales among groups of firms with presence in different minimum numbers of foreign
locations, normalized by the average sales of non-MNE firms based in the US. Figure 8 shows
both these MNE sales premia computed in our calibrated model and the empirical premia
documented by Antràs et al. (2024b). The model premia closely mirror the empirical premia,
reflecting that more productive firms broadly have both more foreign affiliate locations and
higher sales. For example, MNEs (any firm conducting production in at least two countries)
are more than 40 times larger than non-MNEs in the US in both the model and the (untargeted)
data.
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Unweighted Tariffs Weighted Tariffs

Trade MP Affiliates Trade MP Affiliates
(1) (2) (3) (4) (5) (6)

Log Distance -0.687∞∞∞ -0.289∞∞ -0.681∞∞∞ -0.689∞∞∞ -0.284∞∞ -0.681∞∞∞
(0.0541) (0.106) (0.0847) (0.0540) (0.107) (0.0851)

Colony 0.0776 -0.00471 0.232 0.0758 0.000476 0.260
(0.125) (0.131) (0.144) (0.124) (0.131) (0.146)

Contiguity 0.448∞∞∞ 0.424∞∞ 0.448∞∞∞ 0.440∞∞∞ 0.412∞ 0.436∞∞∞
(0.0697) (0.164) (0.0979) (0.0697) (0.163) (0.0983)

Language 0.152 0.468∞∞ 0.561∞∞∞ 0.160 0.476∞∞ 0.577∞∞∞
(0.102) (0.145) (0.155) (0.101) (0.146) (0.161)

Observations 992 707 710 992 707 710

(A) Estimation with PPML

Unweighted Tariffs Weighted Tariffs

Trade MP Affiliates Trade MP Affiliates
(1) (2) (3) (4) (5) (6)

Log Distance -1.106∞∞∞ -0.822∞∞∞ -0.800∞∞∞ -1.104∞∞∞ -0.814∞∞∞ -0.796∞∞∞
(0.0510) (0.122) (0.0740) (0.0509) (0.122) (0.0741)

Colony 0.763∞∞∞ 0.940∞∞∞ 0.659∞∞∞ 0.761∞∞∞ 0.954∞∞∞ 0.669∞∞∞
(0.108) (0.244) (0.149) (0.108) (0.244) (0.149)

Contiguity 0.325∞∞∞ 0.734∞∞∞ 0.410∞∞∞ 0.325∞∞∞ 0.732∞∞∞ 0.408∞∞∞
(0.0913) (0.195) (0.118) (0.0912) (0.195) (0.118)

Language 0.00442 0.559∞ 0.183 0.0000334 0.570∞ 0.190
(0.134) (0.284) (0.173) (0.133) (0.284) (0.173)

Observations 992 707 710 992 707 710

(B) Estimation with OLS

TABLE 3: TRADE, MP, AND FOREIGN AFFILIATE GRAVITY IN THE DATA

The table presents the estimated coefficients from estimating gravity equations. The outcome variable differs
across the columns: bilateral manufacturing trade flows, bilateral multinational production sales, and bilateral
foreign affiliate stocks. The standard gravity controls serve as explanatory variables. All estimating equations
also include origin and destination fixed effects and additional controls for bilateral tariffs and a regional trade
agreement dummy. Tariffs are averages across all manufacturing goods, either unweighted or weighted by the
global trade shares of each good. The specifications exclude the diagonal entries of the respective flow matrix.
Robust standard errors are in parentheses. We denote different levels of significance as follows: ∞∞∞ Significant at
1 percent level, ∞∞ Significant at 5 percent level, and ∞ Significant at 10 percent level.
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Negative Complementarities Positive Complementarities

Trade MP Affiliates Trade MP Affiliates

Language 0.047 0.066 0.080 0.064 0.106 0.197
Contiguity 0.143 0.060 0.053 0.162 0.134 -0.010
Colony 0.025 -0.028 0.187 0.025 -0.039 0.207
Log Distance 0.215 0.001 0.346 0.270 0.016 0.429

(A) Estimated Cost Elasticities of the Gravity Variables

(B) Distribution of Calibrated Bilateral Costs

FIGURE 7: TRADE COSTS, MP COSTS, AND THE BILATERAL COMPONENT OF FIXED COSTS

This figure summarizes the estimated bilateral costs. Figure 7b shows a histogram of the three bilateral cost
matrices in the model: trade costs, MP costs, and the bilateral component of fixed costs. We omit the own-country
costs which are normalized to 1 for all three types of costs. For MP and the bilateral component of fixed costs, we
also omit country pairs where MP is zero, since we set the MP costs to be infinity in those cases. Table 7a presents
the calibrated elasticities of all gravity variables in each of the bilateral costs in the model as specified in equation
(11).

ix



Appendix

FIGURE 8: MULTINATIONAL SALES PREMIA AND NUMBER OF FOREIGN AFFILIATES IN THE
DATA AND THE BASELINE CALIBRATION

The figure compares size sales premia in the model and in the US data obtained from Antràs et al. (2024b). The
sales premium is measured as the relative sales of US-based multinational firms compared to non-MNEs.

x
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Supplemental Online Appendix

D. The Mathematics of CDCPs
D.1. Definitions and Existing Results
Definition (Poset). A poset (partially-ordered set) (P,↖) is a set together with a partial ordering
that is:

1. reflexive: for all x ↑ P, x ↖ x;
2. antisymmetric: for any pair with x ↖ y and y ↖ x, it must be that x = y; and
3. transitive: for any elements with x ↖ y and y ↖ z, it must be that x ↖ z.

The dual poset (P,↖D) is the set together with the dual ordering that is define x ↖D y iff y ↖ x.

Definition (Lattice). A lattice is a poset (L,↖) where, for any x, y ↑ L, there is a unique
supremum sup {x, y} and infimum inf {x, y} with respect to ↖. The lattice is complete if, for
any subset S ⇓ L, there is a unique supremum sup S and infimum inf S. A sublattice (L↘,↖) is
a subset of points L↘ ⇓ L that is itself a lattice.

Definition (Directed complete). A poset (P,↖) is direct complete if, for all subsets D ⇓ P that
is closed under pairwise supremum, sup D exists.

Definition (Scott continuity). A function between two posets f : (P,↖P) →
(
Q,↖Q

)
is Scott-

continuous if, for every subset D ⇓ P that is closed under pairwise supremum, the image of
the supremum is the supremum of the image: f (sup {D}) = sup { f (x) | x ↑ D}.

Definition (Order-preserving (reversing)). A mapping Φ : P → P is order-preserving if, given
x < y, Φ (x) ↖ Φ (y). It is order-reversing if, given x < y, Φ (y) ↖ Φ (x). If the mapping is
either order-preserving or order-reversing, it is monotonic.

Theorem (Tarski (1955)). Given a complete lattice (L,↖) and an order-preserving endomap f : L → L,
the set of fixed points of f forms a complete lattice.

Theorem (Kleene). Given a directed-complete partial order (D,↖) with a least element x and Scott-
continuous endomap f : D → D, f has a least fixed point, which is sup { f n (x) | n ↑ N}.

Theorem (Klime! (1981)). Given a complete lattice (L,↖) and an order-reversing endomap f : L → L.
Then, there is a least element u of L so that (u, f (u)) is a fixed edge of f . There is similarly a greatest
element v with (v, f (v)) a fixed edge of f . Moreover, v = f (u).

D.2. Proofs of Main Results
The squeezing step We first show that SCD-C from above and below are necessary and
sufficient for Φ to be order-reversing and order-preserving, respectively.
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Proposition 1. The mapping Φ defined in Definition 4 is

1. order-reversing iff the underlying objective function f obeys SCD-C from above; and
2. order-preserving iff the underlying objective function f obeys SCD-C from below.

Proof. We show the first statement. Let L ⇐ L↘ be two arbitrary nested decision sets.
Start with the converse. Suppose f obeys SCD-C from above. If Φ (L↘) is empty, then it is

contained in Φ (L) trivially; so let ω ↑ Φ (L↘) be an arbitrary element. Then, by definition of Φ,
Dω f (L) ⇒ 0. With SCD-C from above, it must be that Dω f (L↘) ⇒ 0; hence, ω ↑ Φ (L). Then,
Φ (L↘) ⇓ Φ (L) and Φ is order-reversing.

Now consider the forward direction. Let ω be an arbitrary element so that Dω f (L↘) ⇒ 0. If
no such element exists, then SCD-C from above holds vacuously, so suppose at least one such ω

exists. Then, by definition, ω ↑ Φ (L↘) ⇓ Φ (L) since Φ is order-reversing. Then, by definition
of Φ, it must be that Dω f (L) ⇒ 0.

A reverse argument holds for SCD-C from below.

Corollary 1. Consider the objective function f : P (L) → R.

1. Quasisupermodularity of f is sufficient for SCD-C from below; quasisubmodularity is sufficient
for SCD-from above.

2. If L is finite, the function exhibits increasing marginal values iff it is supermodular and decreasing
marginal values iff it is submodular.

Proof. We show the statements for quasisubmodularity, submodularity, and SCD-C from below.
Similar arguments follow for quasisupermodularity, supermodularity, and SCD-C from above.

1. Suppose f satisfies quasisubmodularity: i.e. for all x, y ↑ P (L),

f (x ↔ y) ⇒ f (y) ⇑ f (x) ⇒ f (x ∈ y)

f (x ↔ y) > f (y) ⇑ f (x) > f (x ∈ y)

and let L ↑ P (L), ω ↑ L with Dω f (L) ⇒ 0. Select any L↘ ⇓ L. We show that Dω (L↘) ⇒ 0.
Let J ↓ L↘ ↔ {ω} and K ↓ L \ {ω}. Then,

Dω f (L) = f (L ↔ {ω})↗ f (L \ {ω})
= f (J ↔K)↗ f (K) ⇒ 0

⇑ f (J ) ⇒ f (J ∈K)

where the last line follows from quasisupermodularity. Then, it immediately follows that
Dω (L↘) ⇒ 0.

3
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2. Suppose f has decreasing marginal values. We show that f is submodular. Let x and y
be arbitrary elements of P (L). Let L ↓ x ∈ y, J ↓ y \ x, and K ↓ y \ x. Note that the
sets are disjoint and

f (x ↔ y) + f (x ∈ y)↗ f (x)↗ f (y)

= [ f (K ↔ L ↔ J )↗ f (K ↔ L)]↗ [ f (L ↔ J )↗ f (L)]

so it suffices to show this difference is non-negative. We proceed with induction on |J |.
Suppose |J | = 1. WLOG, let J ↓ {ω}. Then,

[ f (K ↔ L ↔ {ω})↗ f (K ↔ L)]↗ [ f (L ↔ {ω})↗ f (L)]
= Dω (K ↔ L)↗ Dω (L)

since ω ≃↑ {K ↔ L}. By increasing marginal values, we establish this difference is positive
in the base case. Now suppose increasing marginal values implies supermodularity as
long as |J | = k. Consider the case where |J | = k + 1. Select an element ω ↑ J and
define J̃ ↓ J \ {ω} so that

J̃
 = k. Then,

[
f
(
K ↔ L ↔ J̃ ↔ {ω}

)
↗ f (K ↔ L)

]
↗

[
f
(
L ↔ J̃ ↔ {ω}

)
↗ f (L)

]

=
[

f
(
K ↔ L ↔ J̃ ↔ {ω}

)
↗ f

(
K ↔ L ↔ J̃

)
+ f

(
K ↔ L ↔ J̃

)
↗ f (K ↔ L)

]

↗
[

f
(
L ↔ J̃ ↔ {ω}

)
↗ f

(
L ↔ J̃

)
+ f

(
L ↔ J̃

)
↗ f (L)

]

=
[

f
(
K ↔ L ↔ J̃ ↔ {ω}

)
↗ f

(
K ↔ L ↔ J̃

)]
↗

[
f
(
L ↔ J̃ ↔ {ω}

)
↗ f

(
L ↔ J̃

)]

+
[

f
(
K ↔ L ↔ J̃

)
↗ f (K ↔ L)

]
↗

[
f
(
L ↔ J̃

)
↗ f (L)

]

where the first line is positive by increasing marginal values and the second line is
positive by the inductive assumption.

We now formally prove Theorem 1.

Proof. First, note that

[
L(k+1),L(k+1)

]
=






[
Φ

L(k)


, Φ


L(k)

]
if f satisfies SCD-C from above

[
Φ

L(k)


, Φ


L(k)

]
if f satisfies SCD-C from below

and thus as long as L(k) ⇓ Lε ⇓ L(k), then the monotonicity of Φ guarantees L(k+1) ⇓ Lε ⇓
L(k+1) because Φ (Lε) = Lε.
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We now show that the bounding pair (weakly) tightens each iteration using induction on the
iteration. Start with k = 1. Then, ∅ = L(0) ⇓ L(1) ⇓ L(1) ⇓ L(0) = L trivially. Then, assume
L(k↗1) ⇓ L(k) ⇓ L(k) ⇓ L(k↗1). Applying Φ to each decision set and using monotonicity,





Φ

L(k↗1)


⇓ Φ


L(k)


⇓ Φ


L(k)


⇓ Φ


L(k↗1)


if f satisfies SCD-C from above

Φ

L(k↗1)


⇓ Φ


L(k)


⇓ Φ


L(k)


⇓ Φ


L(k↗1)


if f satisfies SCD-C from below

⇑ L(k) ⇓ L(k+1) ⇓ L(k+1) ⇓ L(k)

from the definition of S.
Finally, each iteration of the squeezing step must add at least one additional item to the

lower bounding set or exclude at least one additional item from the upper bounding set which
can occur a maximum of |L| times.

Corollary 2. As long as f satisfies SCD-C from above or below, the squeezing step S itself is an
increasing mapping.

Proof. Define the partial order ↖[] over the set of bounding pairs so that
[
L,L

]
↖[]

[
L↘,L↘] iff

both L ⇓ L↘ and L↘ ⇓ L, i.e. order the bounding pairs by tightness. We prove the corollary for
the case of SCD-C from above.

Let
[
L,L

]
↖[]

[
L↘,L↘] be two arbitrary ordered bounding pairs. Since Φ is order-reversing,

S
([
L,L

])
=

[
Φ
(
L
)

, Φ (L)
]

is a bounding pair and similarly for
[
L↘,L↘]. Since L↘ ⇓ L and Φ

order-reversing, we have that Φ
(
L
)
⇓ Φ


L↘. Similarly, L ⇓ L↘ implies that Φ

(
L↘) ⇓ Φ (L).

Thus,

[
Φ
(
L
)

, Φ (L)
]
↖[]

[
Φ

L↘ , Φ

(
L↘)

]

which completes the proof.
Note that a bounding pair

[
L,L

]
defines an implicit sublattice on (P (L) ,⇓). Thus, letting

B be the set of sublattices of (P (L) ,⇓), then S is an increasing map on the lattice (B,∋).

Corollary 3. When f satisfies SCD-C, so that
[
L(K),L(K)

]
= SK ([∅, L]) is a fixed point by Theorem

1, then

1. if f satisfies SCD-C from below, then L(K) and L(K)are the smallest and largest fixed
points of Φ respectively; and

2. if f satisfies SCD-C from above, then L(K) and L(K)are the smallest and largest fixed
edges of Φ respectively.

5



Supplemental Online Appendix

Proof. We show each statement in turn. Let D ⇓ P (L) be closed under pairwise join and
denote Φ (D) ↓ {Φ (L) | L ↑ D} the image of D.

1. In this case, Φ is order-preserving. We first show that Φ is Scott-continuous. Let x =

sup D which exists in P (L) since it is a complete lattice. Because Φ is order preserving,
we have that for all L ↑ D, Φ (L) ⇓ Φ (sup D) = Φ (x) so the image of the supremum is
an upper bound. Additionally, since D is finite, it is closed under join:

⋂
{L | L ↑ D} ↑ D

and thus closed under supremum. In other words, x ↑ D. Then, Φ (x) ↑ Φ (D) so Φ (x)
is the least upper bound of Φ (D). Hence, Φ is Scott-continuous. With a direct application
of Kleene’s fixed point theorem, L(K) = ΦK (∅) is the smallest fixed point of Φ. Now
consider the dual poset (P (L) ,⇓D) = (P (L) ,∋). Note that the least element in the
dual poset is L, since L ∋ L for all L ↑ P (L). Define ΦD as an endomap on the dual
poset with ΦD (L) ↓ Φ (L) and note that Φ is still order-preserving: for all L △ L↘, we
have Φ (L) ∋ Φ (L↘). By an identical argument as above, it is thus Scott-continuous, so
by direct application of Kleene’s fixed point theorem, L(K)

= ΦK
D (L) is the smallest fixed

point on ΦD. It is thus the largest fixed point of Φ.
2. Define

E ↓
{
L | ▽L↘ ↑ P (L) where L = Φ

(
L↘) and L↘ = Φ (L)

}

as the set of fixed edges of Φ. We first show E =
{
L | Φ2 (L) = L

}
the set of fixed points

of Φ2. First, let Φ2 (L) = L e an arbitrary fixed point of Φ2. Then, Φ (Φ (L)) = L so
L ↑ E with L↘ = Φ (L). Now let L ↑ E. Then, Φ (Φ (L)) = Φ (L↘) = L so L is a
fixed point of Φ2. The two sets are equivalent. Because Φ2 is order-preserving in this
case, by identical arguments we have that L(K) = Φ2K (∅) is the smallest fixed point
of Φ2, i.e. the smallest element of E or the smallest fixed edge of Φ. Then, L(K)

=

sup
{

Φ

L(K)


, Φ


L(K)

}
= Φ


L(K)


since Φ is order-reversing, which implies that

L(K) ↑ E. We show it is the largest element of E to complete the proof. Let L ↑ E be an
arbitrary element. Let Lsup ↑ E be the greatest element. Then, with L(K) ⇓ Lsup. Define
L↘ = Φ (Lsup) and note that it is also in E. Then, L↘ = Φ (Lsup) ⇓ Φ


L(K)


= L(K)

since Φ is order-reversing. Then, L↘ = L(K) since it is the smallest element, so Φ (L↘) =

L = L(K) so it is the greatest element.

The branching step We show that the branching procedure identifies fixed points of the
mapping Φ.

6
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Theorem 3. The branching procedure identifies precisely all fixed points of Φ within
[
L,L

]
.

Proof. Consider Φ : P (L) → P (L). Suppose
[
L,L

]
is a fixed point (edge) of order-preserving

(reversing) Φ. We prove by induction on the cardinality of L \ L.
Suppose L \ L = {ω} so that the cardinality is 1. Then, L = L ↔ {ω} so there are no other

sets sandwiched by
[
L,L

]
. Since the bounding pair is itself a fixed point (edge), the base case

holds vacuously by branching 0 times. Now, suppose branching identifies all fixed points
if there are k elements in L \ L. Consider a scenario where L \ L contains k + 1 elements.
Branching necessarily partitions the remaining search space into two smaller problems: the
one defined by

[
L ↔ {ω} ,L

]
and the one defined by

[
L,L \ {ω}

]
. Any fixed point contained in

exactly one of these cells. Then, by inductive assumption, branching identifies all fixed points
in each cell separately, and thus all fixed points of the larger problem.

Corollary 4. The branching procedure identifies precisely all fixed points of Φ if applied to
[
L,L

]
=

SK ([∅, L]).

Proof. By Theorem 1,
[
L,L

]
are the smallest and largest fixed points (edges) of Φ. Thus, any

other fixed point (edge) must be sandwiched by them. The corollary follows immediately from
Theorem 3.

Corollary. Suppose f exhibits SCD-C from above and
[
L,L

]
is the converged pair from squeezing

where
L \ L

 > 2. Then, the number of decision sets left after the branching procedure completes,Λ f
(
L,L

), is strictly less than the number of decisions to evaluate with brute force.

Proof. Since f exhibits SCD-C from above, Φ is order-reversing. Then, note that if L1 ≃= L2 are
both fixed points of Φ, it cannot be that one is nested in the other. Without loss of generality, if
it were the case that L1 ⇐ L2, then L2 = Φ (L2) ⇓ Φ (L1) = L1, a contradiction.

Moreover, since Φ is order reversing, the bounding pair of sets L and L are each fixed edges
but not fixed points; thus, they are not the optimal decision set and can be disregarded when
approaching the remaining problem with brute force. Brute force thus must choose amongP

(
L \ L

)↗ 2 decision sets.
For a contradiction, suppose that

Λ
([
L,L

]) =
P

(
L \ L

)↗ 2. Then, it must be that

Λ
([
L,L

])
=

{
L ↔ L | L ↑ P

(
L \ L

)}
\
{
L,L

}

since L is finite. Because
L \ L

 > 2, we can select three distinct items from L \ L and let them
be ω1, ω2, and ω3. Note then that

L ⇐ (L ↔ {ω1}) ⇐ (L ↔ {ω1, ω2}) ⇐ L

7
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and hence both are in Λ
([
L,L

])
. Then, there are two fixed points of Φ where one is contained

in the other, a contradiction.

The generalized squeezing step We first establish the following result, to write the general-
ized squeezing step more simply.

Lemma. Suppose the underlying objective function f satisfies SCD-T and let ω ↑ L and L,L↘ ↑ P (L)
where L ⇐ L↘.

1. If the underlying objective function f also satisfies SCD-C from above, then zg
ω (L) ⇒ zg

ω (L
↘).

2. If the underlying objective function f also satisfies SCD-C from below, then zg
ω (L) ⇒ zg

ω (L
↘).

Proof. Begin with SCD-C from above. Then,

0 = Dω
(
L, zg

ω (L)
)

⇑ 0 ↖ Dω
(
L↘, zg

ω (L)
)

⇑ zg
ω

(
L↘) ⇒ zg

ω (L)

where the first implication follows from SCD-C from above and the second from SCD-T.
Likewise, suppose f instead satisfies SCD-T from below. Then,

0 = Dω
(
L, zg

ω (L)
)

⇑ 0 ⇒ Dω
(
L↘, zg

ω (L)
)

⇑ zg
ω

(
L↘) ↖ zg

ω (L)

which completes the proof.

Thus, similarly to the squeezing step, the generalized squeezing step applied to a pair of
bounding set functions simplifies to

Sg
[

L (·) ,L↘
(·)

]
↓






[
Φg (L (·) , ·

)
, Φg (L (·) , ·)

]
if f satisfies SCD-C from above

[
Φg (L (·) , ·) , Φg (L (·) , ·

)]
if f satisfies SCD-C from below

if the objective function also satisfies SCD-T. We now prove Theorem 2.

Proof. We prove the case of SCD-C from above. Let Φ (L, z) ↓ {ω | Dω f (L, z) ⇒ 0} be the
mapping Φ evaluated at the type z. Consider a pair of bounding set functions

[
L (·) ,L (·)

]

and the partition it induces T
([
L (·) ,L (·)

])
. Select an arbitrary interval from the partition

Zt; let its bounding pair be
[
Lt,Lt

]
.

Applying Theorem 1 element-wise, we have Lt ⇓ Φ
(
Lt, z

)
⇓ Lε (z) ⇓ Φ (Lt, z) ⇓ Lt.

Thus, it is sufficient to show that Φg (Lt, z
)
= Φ

(
Lt, z

)
and Φg (Lt, z) = Φ (Lt, z) for every

z ↑ Zt, since Zt was an arbitrary interval of T . Choose an arbitrary type z ↑ Zt and let
ω ↑ Φg (Lt, z

)
be an arbitrary element. Then, zg

ω

(
Lt

)
< z and 0 = Dω f

(
Lt, zg

ω

(
Lt

))
together

imply 0 ↖ Dω
(
Lt, z

)
by SCD-T. Thus, ω ↑ Φg (Lt, z

)
. Since ω was an arbitrarily chosen element

8
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of Φg (Lt, z), it follows that Φg (Lt, z) ⇓ Φ (Lt, z) for all z ↑ Zt. Similarly, if ω ↑ Φ (Lt, z) is an
arbitrary element, then 0 ↖ Dω f (Lt, z) implies z ⇒ zg

ω (Lt) by SCD-T. Thus, ω ↑ Φg (Lt, z) so
Φ (Lt, z) ⇓ Φg (Lt, z). This argument establishes that Φg (Lt, z

)
= Φ

(
Lt, z

)
while a similar

argument establishes Φg (Lt, z) = Φ (Lt, z). The proof is complete for the case with SCD-C
from above.

The argument in the case of SCD-C from below follows the same logic.

D.3. Other Results
Assumption 1 (Continuity of objective in type). For all strategies L, the function f (L, ·) is
continuous in type z.

Assumption 2 (Finite crossing of objective). For any pair of strategies (L1,L2), there is a finite
number of types z so that f (L1, z)↗ f (L2, z) = 0.

Theorem 4 (Continuous policy function almost everywhere). Suppose Assumptions 1–2 hold and
L is finite. Then, the policy correspondence is a function almost everywhere, and it is continuous both to
the left and to the right. In particular,

1. Assumption 2 and finite L implies that the set of types where L∞ (·) is not unique is finite;
2. Assumption 1 implies that, if Lε (z) is unique, then there exists δ > 0 so that for all z↘ ↑

[z ↗ δ, x + δ], the optimal strategy is also Lε (z); and
3. Assumptions 1–2 and finite L imply that, if the optimal strategy for z is not unique,

a) there exists a unique strategy L+ where there exists a δ+ > 0 so that L+ is optimal for all
z↘ ↑ [z, z + δ]; and

b) there exists a unique strategy L↗ where there exists a δ↗ > 0 so that L↗ is optimal for all
z↘ ↑ [z ↗ δ, z].

Proof. We show each statement in turn.

1. If there are zero or one types wheres where Lε (z) is not unique, then the theorem holds
trivially. Suppose there is more than one type where the optimal strategy is not unique.
Let

n = max
(L1,L2)

|{z | f (L1, z) = f (L2, z)}|

where note the maximum exists because there are a finite number of pairs (L1,L2). Then,
there cannot be more than n ⇔ |P (P (L))| additional types where the optimal strategy is
not unique.

9
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2. Define

g
(
z↘
)
= min

L ≃=Lε(z)

{
f
(
Lε (z) , z↘

)
↗ f

(
L, z↘

)}

and observe that g (z) > 0 since Lε (z) is unique. Moreover, g is continuous since
differences of continuous functions are continuous, and so is a minimum over a set of
continuous function. Then, there is a δ̃ > 0 so that, for all z↘ ↑

(
z ↗ δ̃, z + δ̃

)
,

g
(
z↘
)
↗ g (z)

 < 1
2

g (z)

⇑ g
(
z↘
)
> g (z)↗ 1

2
g (z) =

1
2

g (z) > 0 .

Then, for all z↘ ↑
[
z ↗ 1

2 δ̃, z + 1
2 δ̃
]
,

0 < f
(
Lε (z) , z↘

)
↗ f

(
L, z↘

)
∝L ≃= Lε (z)

so setting δ = 1
2 δ̃ is sufficient.

3. We only prove the first statement; the proof of the second is identical in spirit. Use
induction on the number of optimal strategies. Suppose there are exactly two optimal
strategies L1 and L2 for the type z. For i ↑ {1, 2}, let

gi
(
z↘
)
= min

L ≃↑{L1,L2}

{
f
(
L1, z↘

)
↗ f

(
L, z↘

)}

and observe by the same arguments as above that g̃ ↓ g2 ↗ g1 is continuous. First,
suppose g̃ (z↘) ≃= 0 for all z↘ > z. By the continuous value theorem, it must either be that
g̃ (z↘) > 0 or g̃ (z↘) < 0. Assign

L+ =





L2 if g̃ (z↘) > 0 for z↘ > z

L1 if g̃ (z↘) < 0 for z↘ > z

Note that L+ is optimal for all z↘ > z. Then, the statement holds for any positive value of
δ. Now, suppose g̃ (z↘) = 0 for some z↘ > z. Let

z ↓ max
{

z↘ | z↘ > z, g̃
(
z↘
)
= 0

}
> z

which exists since the set is finite by Assumption 2. Observe that for any z↘ ↑


z, 1
2 z + 1

2 z
]
,

we have that g̃ (z↘) ≃= 0. In the same argument as above, g̃ (z↘) > 0 for the entire interval

10



Supplemental Online Appendix

or g̃ (z↘) < 0. Thus, assigning δ = 1
2 z ↗ 1

2 z is sufficient. We have now established the base
case. Now suppose the statement holds if there are k optimal strategies at z. Consider the
case where there are k + 1 optimal strategies, enumerated L1, . . . ,Lk+1, and the modified
objective function

f̃ (L, z) =





f (L, z) if L ≃= Lk+1

f (L1, z) if L = Lk+1

noting that, for z↘ = z, the first k strategies are optimal for the modified problem. Then,
the statement holds for the modified problem; let L+ ↑ {Li | i = 1, . . . , k} be the strategy
for which the statement holds in the modified problem. Repeat the proof for the base
case assigning L1 = L+ and L2 = Lk+1.

Lemma 1. Suppose Assumptions 1 and 3 hold. Then, for any interval [z, z↘) of the type space, let

L ↑ arg max f (L, z) , L↘ ↑ arg max f
(
L, z↘

)

be arbitrary elements of the argmaxes. If L = L↘, then Lε (·) = L on the interval [z, z↘).

Proof. We proceed by contradiction. Let L̃ be an argmax (possibly but not necessarily unique)
for both types z and z↘. Suppose there exists a type m ↑ [z, z↘) for which Lε (m) ≃= L̃. If L̃ is not
optimal for the type m, then define g (z) ↓ f (Lε (m) , z)↗ f

(
L̃, z

)
and note by assumption

g (m) > 0. In addition, g (z) ↖ 0 and g (z↘) ↖ 0 by construction. Then, by the continuous
value theorem, g crosses 0 at least once on the interval [z, m) and again on (m, z↘], violating
Assumption 3. Then, L̃ must be optimal for m.

E. Policy Function Refinement
In this section, we provide details about refining the policy function after the generalized
squeezing step has converged. We describe a generalization of the branching procedure, then
an alternative refinement which requires additional structure on the objective function.

E.1. The Generalized Branching Procedure
We can extend the logic of the branching step defined above to the context of heterogeneous
agent types.

Consider the bounding set functions
[
L (·) ,L (·)

]
that result after applying the generalized

squeezing procedure. Similarly to the branching step, for each z, we select one undetermined

11



Supplemental Online Appendix

item in L (z) \ L (z) and divide the problem into two subproblems: one which includes it
for type z and one which excludes it. Then, generalized squeezing can be applied to each
subproblem to determine conditionally optimal behavior. As above, the generalized branching
step can be applied recursively until L (·) = L (·) on each branch.

We now formally define the generalized branching step which uses the generalized squeez-
ing step from Definition 8.

Definition (Generalized branching step). Given bounding set functions
[
L (·) ,L (·)

]
, define

the function ω (·)

ω (z) =





∅ if L (z) = L (z)

{ω} for any ω ↑ L (z) \ L (z)

for each z. The mapping B is given by

Bω
([
L (·) ,L (·)

])
=

{
SK ([

L (·) ↔ ω (·) ,L (·)
])

, SK ([
L (·) ,L (·) \ ω (·)

])}
.

For initial bounding set functions
[
L (·) ,L (·)

]
, we denote the operator of applying the branch-

ing step until global convergence by Λ
([
L (·) ,L (·)

])
. Global convergence of the branching

step occurs when the stopping condition L (·) = L (·) is met on each branch. The globally
converged result is a collection of branch-specific policy functions.

If the initial bounding set functions are outcomes from the generalized squeezing procedure,
then the generalized squeezing procedure can be simplified. In particular, recall that the
bounding set functions

[
L (·) ,L (·)

]
induce a finite partitioning on the type space, where

each interval Zt is associated with a constant bounding pair
[
Lt,Lt

]
shared by all types in

the interval. For any interval where Lt = Lt, the optimal decision set has been found and
no branching is required. The problem is instead to compute the policy function on intervals
where Lt ⇐ Lt. We formalize this notion with the definition below.

Definition. Given a function Lε : Z → P (L) and a restriction of the original domain Z ⇐ Z,
let Lε |Z : Z → P (L) be the function restricted to the subdomain Z .

The generalized squeezing procedure identifies Lε |Zt for any interval Zt where Lt = Lt.
The generalized branching procedure thus need only be applied to a interval Zt where Lt ⇐ Lt,
which identifies Lε |Zt without needing to perform unnecessary computation on intervals for
which the policy function has already been identified.

Figure 9 shows an example of applying the generalized branching step for an objective
function satisfying SCD-C and SCD-T. In this example, the generalized squeezing procedure

12
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|Zt

[∅, {USA, CAN}]
|

|USA
included

| |
{USA} {USA, CAN}

|USA
excluded

| |
∅ {CAN}

| |||
∅, {USA} {CAN}, {USA} {CAN}, {USA, CAN}

FIGURE 9: AN EXAMPLE OUTCOME OF THE GENERALIZED BRANCHING PROCEDURE

The figure illustrates an possible outcome of the generalized branching procedure, in an example where L (·) = ∅
and L (·) = {USA, CAN}. The branching step selects ω (·) = {USA} and creates two branches: one which
presumes USA is in the optimal set and the other which presumes the opposite. Convergence on a single branch
occurs when the generalized squeezing procedure returna conditionally optimal policy function. The final output
of the full recursive squeezing procedure is the collection of all conditionally optimal policy functions.

has converged, but on the interval Zt, the bounding set functions are not equal. In particular,
L (z) = ∅ and L (z) = {USA, CAN} for all z ↑ Zt. This starting point is depicted at the top of
the figure. For all other intervals Zt↘ , the policy function has been identified by generalized
squeezing and therefore do not require branching.

The generalized branching step then forms two branches, which are depicted immediately
below: the blue branch presumes that USA is in the optimal set along the interval while the
pink branch presumes that it is not.

Applying the generalized squeezing procedure to both branches results in a conditional
policy function for each branch. Finally, at the bottom of the figure, the two conditional policy
functions are merged to deliver the solution candidates for each sub-interval: in the left sub-
interval, the conditional policy function from the branch that excludes USA yields the solution
candidate ∅ while the conditional policy function from the branch that includes USA yields
the solution candidate {USA}. A similar logic holds for the other two sub-intervals. Then,
the unconditional policy function selects among the solution candidates, for each z ↑ Zt, the
decision set which delivers the highest value for the objective function.

If it were the case that one branch contains a sub-interval in which the generalized squeezing
step has not identified the policy function, then the generalized branching procedure only
need be applied recursively to that particular sub-interval.

To summarize the branching procedure, let
[
L (·) ,L (·)

]
be valid bounding set functions.
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Then, whenever f exhibits both SCD-C and SCD-T,

Lε (z) = arg max
{L(z)|L(·)↑Λ([L(·),L(·)])}

f (L, z) .

For each type z, the properties of the branching step from the previous section hold.

E.2. Iterative Cuto! Search
In this section, we describe a method of choosing

L (t) = arg max
L↑S

f (L, t)

on the interval t ↑ [z, z↘). To do so, we introduce a final Assumption on the objective function.

Assumption 3 (Single crossing of objective). For any pair of strategies (L1,L2), there is at most
one type z so that f (L1, z) = f (L2, z).

The iterative cutoff search described in this section requires the policy function to satisfy
Assumptions 1 and 3. It can thus requires structure additional to SCD-T from the main text.18

Definition 9 (Iterative cutoff search). Consider an interval [z, z↘) and choices S. Set ω(1) = z,
r(1) = z↘, L(1)

ω = Lε (z), and L(1)
r = Lε (z↘). Iterate as follows.

1. Identify the type m(n) so that

f

L(n)
ω , m(n)


= f


L(n)

r , m(n)


e.g. from single-agent crossing, as well as an element L(n)
m ↑ arg maxS f


L, m(n)


.

a) If L(n)
m coincides with neither L(n)

ω nor L(n)
r , set

ω(n+1) = ω(n) , L(n+1)
ω = L(n)

ω

r(n+1) = m(n) , L(n+1)
r = L(n)

m

and return to the first step.
b) Otherwise, set

Lε (z) =





L(n)
ω for z ↑

[
ω(n), m(n)



L(n)
r for z ↑

[
m(n), r(n)

 .

18Note that, as long as Assumption 3 holds, then the objective function also satisfies SCD-T.
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2. If r(n) = z↘, the interval has been resolved. Otherwise, set

ω(n+1) = r(n) , L(n+1)
ω = L(n)

r

r(n+1) = z↘ , L(k+1)
r = Lε (z↘

)

and return to the first step.

Lemma 2. Suppose Assumption 1 holds. At all iterations n of iterative cutoff search as in Definition 9,
it is the case that z ↖ ω(n) ↖ r(n) ↖ z↘. Moreover, for each n, m(n) ↑

[
ω(n), r(n)

]
is unique.

Proof. We start with the first statement, using induction on n. In the first step, z = ω(1) < r(1) =
z↘ trivially. Suppose the statement is true for iteration n. Consider iteration (n + 1). Then,
either

ω(n+1) = r(n) ≃= z↘ , r(n+1) = z↘

or

ω(n+1) = ω(n) , r(n+1) = m(n)

from the previous iteration. Start with the first possibility. By inductive assumption, z ↖ r(n) <
r so z ↖ ω(n+1) < r(n+1) = z↘. Now consider the second possibility. By inductive assumption,
z ↖ ω(n) = ω(n+1) ↖ m(n) = r(n+1) ↖ z↘.

It must be that L(n)
ω ≃= L(n)

r . Then, define g (z) ↓ f

L(n)
ω , z


↗ f


L(n)

r , z


and note that

g

ω(n)


⇒ 0 but g


r(n)


↖ 0, which at least one inequality strict. If g


ω(n)


= 0, then setting

m(n) = ω(n) is sufficient and similarly if g


r(n)

= 0. If both inequalities are strict, then the

continuous value theorem guarantees a value m(n) ↑

ω(n), r(n)


where g


m(n)


= 0. It is

unique by Assumption 3.

Proposition. If Assumptions 1 and 3 hold and S is finite, then iterative cutoff search as in Definition 9
correctly identifies Lε (·) on [z, z↘).

Proof. Note that iterative search concludes in a finite number of iterations, since S is finite and
Assumption 3 guarantees at most (|S|2 ) cutoffs.

Use strong induction on the number of iterations it takes to conclude. Consider the case
where the iteration concludes in one step. By Lemma 2, m ↑

[
ω(1), r(1)

]
. It also must be that

L(1)
m coincides with either L(1)

ω or L(1)
r . Suppose it coincides with L(1)

ω . Additionally,

f

L(1)

m , m(1)

= f


L(1)
ω , m(1)


= f


L(1)

r , m(1)

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where the last equality follows from the definition of m(1). By Lemma 1, the policy function is
thus set correctly along the entire interval. A similar argument follows if L(1)

m coincides instead
with L(1)

r .
Suppose, if the search concludes in 1 ↖ k ↖ n iterations, then it correctly identifies the

policy function. Consider the case where it concludes in (n + 1) iterations. The first iteration
must bypass step 1b, since otherwise the search concludes. Then, it must be that

ω(2) = ω(1) = z , r(2) = m(1) .

Consider alternatively initiating the iteration on
[
z, m(1)


and call this search the “left search”.

Note that left search proceeds identically to the original iteration from iteration 2. Since the
original iteration concludes in (n + 1) iterations, left search takes at most n steps. There is
thus some k < n where r(k+1) = m(1). By strong inductive assumption, left search correctly
determines the policy function on

[
z, m(1)


.

Once left search concluded on the kth iteration, the iteration sets ω(k+1) = m(1) and r(k+1) =

z↘. Iterations (k + 1) to (n + 1) proceed as if the iteration had been initiated with
[
m(1), z↘


.

Similarly by the strong inductive assumption, iterative cutoff search correctly determines the
policy function on this interval.

Given a objective function that satisfies Assumptions 1 and 3, iterative cutoff search can
thus be used. Setting S = P (L), it can be directly applied to find the policy function on any
finite interval [z, z↘) for which the policy function at the endpoints is known. Alternatively,
it can be used after generalized squeezing has converged to refine the policy function on
each sub-interval Zt for which the bounding pair is loose. Finally, it can be used after gener-
alized squeezing and branching to identify the policy function on each sub-interval where
Λ
([
L (·) ,L (·)

])
features multiple conditionally-optimal decisions.

F. SCD-C and Cross-location Employment Elasticity
In Section 3, we provide the parameter restriction which determines the direction of comple-
mentarities in the model. In particular, if the elasticity of substitution among locations in the
firm’s cost function, ϱ, exceeds the elasticity of demand, σ ↗ 1, then the complementarities are
negative; otherwise they are positive.

We give an employment elasticity interpretation of this restriction. Consider the partial
equilibrium response of the firm’s total employment at location ω↘ ↑ L to a small change in
the wage wω in location ω ↑ L, holding fixed the firm’s decision set L and all other aggregates.
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This employment elasticity is

∂ ln (emp. in ω↘)
∂ ln wω


L
= [ϱ ↗ (σ ↗ 1)]∑

n

[
ε↗ϱ

iω↘nyin (L, z)

∑n↘ ε↗ϱ
iω↘n↘yin↘ (L, z)

] [
ε↗ϱ

iωn

∑k↑L ε↗ϱ
ikn

]

↗ (ϱ + 1) 1
[
ω = ω↘

]

where yin (L, z) are the firm’s total sales in market n.
The own-elasticity, when ω↘ = ω, is always negative: as the wage increases, the firm

adjusts downwards its employment in that location, all else equal. However, the sign of
the cross-location employment elasticity, when ω↘ ≃= ω, precisely depends on the size of ϱ

relative to (σ ↗ 1). If the cross-elasticity is positive, so that the firm increases employment
at all other locations when the wage at a given location increases, then there are negative
complementarities among locations. This case corresponds to ϱ > σ ↗ 1, the condition for
the firm’s problem to satisfy SCD-C from above. On the other hand, if the firm instead
decreases employment at all other locations, then there are positive complementarities among
the locations. This case corresponds to ϱ < σ ↗ 1, when the firm’s problem satisfies SCD-C
from below. These elasticities are the related to those estimated in Muendler and Becker (2010),
but not directly comparable since our elasticities depend on the firm’s particular location set L
and the location-market shares of each (ω, n) pair.

G. Generalized Theoretical Framework
In this section, we relax the assumptions on the production structure and the demand system
in our model in Section 3. The generalized cost and demand functions nest several prominent
frameworks. We then show how to establish both single-crossing differences conditions in this
more general setup.

G.1. General Cost Function
Consider a firm of productivity z ↑ R+ headquartered in country i with a production location
set L and the unit cost cin (L, z) of delivering its final good to a destination market n. In Section
3, equation (1), we presented a particular formulation for cin (L, z), which we microfound at
the beginning of this section. Here, we relax the assumption on cin (L, z) while remaining
agnostic on its microfoundation.

Assumption 4 (Generalized marginal cost function). The marginal cost function of a firm head-
quartered in country i with productivity z in destination n can be written as the composition cin (L) =
g (Θin (L) , z) of the vector-valued production index function Θin : P(L) → RK and the outer cost
function g : RK ⇔ R+ → R+ where:
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1. each dimension of the production index function features no interdependencies among elements of
L and is increasing in L, i.e. for all ω ↑ L, L ⇓ L, and k ↖ K,

εkiωn ↓ Θkin (L ↔ {ω})↗ Θkin (L \ {ω}) ⇒ 0

is independent of L; and
2. the outer cost function g is monotonically decreasing in each dimension of production potential

and in firm productivity (if it is increasing, redefine z̃ ↓ ↗z), i.e. for all L ⇓ L, k ↖ K, and
z ↑ R+

∂g
∂Θkin

↖ 0 ,
∂g
∂z

↖ 0 .

The central object in Assumption 4 is the production “index” function Θin that measure the
overall potential of the production location set L along K dimensions. These dimensions could
represent different technological techniques of production, industries, or other latent variables.
Many papers in the multinational literature refer to Θin (L) as the “production potential” or
“sourcing potential” associated with a given location set (see, e.g., Antras, Fort, and Tintelnot
2017). Importantly, for each dimension k, the marginal contribution of each location to the
index is independent of the marginal contribution of other locations.

We now present the assumption on fixed costs.

Assumption 5 (General fixed cost function). The total fixed cost of establishing a production location
set L for a firm headquartered in location i, Fi (L) , is given by:

Fi (L) = ∑
ω↑L

Fiω.

Assumption 5 asserts that there is an independent fixed cost Fij for establishing each
production location. In the framework of Section 3, these fixed costs are Fiω = wω fiω.

Special cases We discuss existing frameworks which satisfy the structure imposed in As-
sumption 4. Consider first the case where K = 1, so the production index Θin (L) is a scalar.
The CES marginal cost function cin (L, z) in Section 3, as well as in Antras, Fort, and Tintelnot
(2017) and Tintelnot (2017), follow this structure with

Θin (L) = ∑
ω↑L

εiωn , g (Θ, z) =
Γ
z

Θ↗ 1
ϱ

where εiωn is a combination of fundamentals and aggregates, while Γ is a constant of integration.
Assumption 4 is also satisfied in models in which the location-input-specific productivity
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shocks are distributed according to a multivariate Pareto as in Arkolakis, Ramondo, et al.
(2018), or a Fréchet distribution with a uniform correlation across draws. In these cases, the
index function remains the same while the outer cost function is

g (Θ, z) =
Γ
z

Θ↗ 1↗ρ
ϱ

where ρ is the correlation among draws and ϱ is the distribution’s shape parameter.
Lind and Ramondo (2023) present a cost function that features K nests. This cost function

satisfies the multidimensional case with K > 1. In this case,

Θkin (L) = ∑
L

εkiωn , g (Θ, z) =
Γ
z

[

∑
k

Θkin (L)1↗ρk

]↗ 1
ϱ

where now the location set L maps to a different potential for each technique k and ρk is the
substitutability across locations within the nest k. As an example, suppose there is a standard
production technique k = 1 and a skill-intensive production technique k = 2. In this case,
K = 2, and the nests represent production techniques. Then, Θ1in (L) represents overall
potential of the location set L when the firm applies the standard production technique, while
Θ2in (L) represents the potential when applying the skill-intensive technique. These potentials
differ since the low-skill and high-skill wages could differ in each location, so the potential of a
particular location set depends on which technique the firm uses. In the same way, locations
substitute for each other within each production technique, captured by ρk, but not directly
across techniques. Lind and Ramondo (2023) microfound this cost function using a nested
multivariate Fréchet distribution with correlations ρk, and show that is sufficiently flexible to
approximate any general correlation structure up to arbitrarily close precision. Note that this
formulation nests the previous special cases when K = 1.

G.2. General Demand Function
Consider a set of destination markets N, each of which feature consumers with residual
demand function qn (pn). We then impose the following structure on the firm’s variable profits.

Assumption 6 (Generalized variable profit function). Given pricing choices {pn}n in each market
n, the variable profits of a firm headquartered in location i take the form

v (ci) = ∑
n↑N

[qn (pn) pn ↗ qn (pn) cin] ,

where ci = [cin]n is the vector of unit costs of producing and delivering a good to the destination markets
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n.

A key feature of this profit function is that the destination markets are independent and
that there are no strategic interactions among firms. In particular, the unit cost cin of serving a
market n does not affect the variable profits earned in destination market n↘ ≃= n. Similarly, the
price pn set by the firm in market n does not affect the variable profits in a different destination
market. This formulation does not require demand to be homothetic, nor does it place any
particular restrictions on the elasticity of demand.

Following standard firm maximization, the firm sets a different price in each market accord-
ing to the rule

p∞n (cin) =
εqn (p∞n (cin))

εqn (p∞n (cin))↗ 1
cin,

where εqn (p) is the price elasticity of the demand function qn at the price p. Incorporating the
optimal pricing rule, we define the variable profits in market n earned at the optimal price

v∞n (cin) ↓ qn (p∞n (cin)) p∞n (cin)↗ qn (p∞n (cin)) cin

as a function of marginal cost cin.

Special cases Our framework from Section 3 posits the constant elasticity (CES) demand

system, which easily satisfies Assumption 6 with qn (pn) = Xn
Pn


pn
Pn

↗σn
where Xn and Pn

are market aggregates. The optimal pricing rule is pεn (cn) =
σn

σn↗1 cn, which implies constant
markups over marginal costs.

Assumption 6 is sufficiently general to allow variable elasticity of demand and thus variable
markups. As an illustrative example, we discuss the Pollak (1971) demand system which is also
satisfies Assumption 6 and has become popular in the literature studying variable markups.19

The demand function is characterized by

qn (pn) =

(
pn
Pε

n

)↗σn

+ γ , pεn (cn) =
σn

(σn ↗ 1) +


pεn(cn)
Pε

n

σn cn (12)

where γ < 0 and Pε
n is the market aggregate choke price. The markup is decreasing in the

firm’s marginal cost.
The demand in equation (12) features several appealing features for the study of variable

markups. First, there is a choke price, which implies that entry into each destination market
n is guaranteed only for the firms with low enough marginal costs cn ↖ Pε

n . A firm does

19See, for example, Simonovska (2015), Klenow and Willis (2016), Arkolakis, Costinot, Donaldson, et al. (2019),
and Behrens et al. (2020).
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not necessarily serve all countries, but self-selects into export markets consistent with the
data (see also Arkolakis, Costinot, Donaldson, et al. 2019). Second, the elasticity of demand
asymptotically approaches constant, which allows the model to fit the Pareto tails of firm
size distribution, a key feature of the data (see Amiti, Itskhoki, and Konings 2019; Arkolakis
2016). Finally, under very general conditions, it implies that markups increase with firm size, a
salient finding of recent investigations on the relationship of firm size and firm markups (see
De Loecker et al. 2016).

G.3. Su"cient Conditions for SCD-C
Given Assumptions 4–6, the firm’s variable profits across all markets n net of fixed costs is

πi (L, z) = ∑
n

v∞n (cin (L, z))↗ Fi (L)

and thus its CDCP is to maximize this function with respect to the decision set L.
We now derive a sufficient condition for SCD-C. To begin, we can write the marginal value

of location j as defined in Definition 1 as follows:

Dωπi (L, z) = ∑
n
[v∞n (cin (L ↔ {ω} , z))↗ v∞n (cin (L \ {ω} , z))]↗ Fiω

= ∑
n

 1

0
ξin (ω)

↘ [̸Θv∞n (Θ (L1 \ {ω}) + tξin (ω) , z)]dt ↗ Fij

where ξin (ω) is the K ⇔ 1 vector with kth element εkijn which represents the marginal contribu-
tions of location ω to the production index of each technique k. The second line follows from
the gradient theorem. Overall, the marginal value of a location ω represents the gain in variable
profits from increasing the each dimension of the index function Θin, offset by the additional
fixed costs incurred.

The SCD-C condition requires that marginal value only cross zero once. It is sufficient to
show the marginal value is monotonic, i.e. given any L1 ⇓ L2 ⇓ L, the marginal value of any
given item ω is bigger (smaller) at L2 than for L1 for SCD-C from below (above). Comparing
this marginal value across two decision sets L1 and L2 for any pair L1 ⇓ L2,

Dωπi (L2)↗ Dωπi (L1) = ∑
n

 1

0

 1

0
ξin (ω)

↘ HΘv∞n (Θ (L1 \ {ω}) + tξin (ω)

+u (Θ (L2 \ {ω})↗ Θ (L1 \ {ω})) ; z) ξin (ω)dudt

where H is the Hessian operator. We assume the second derivative of the profit function exists
and use the fact that, as a direct consequence of the index function being a sum of marginal
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effects, the value of the index evaluated at L2 exceeds its value at L1 for all k.
Then, if the Hessian of v∞n is positive semidefinite for all n, the difference is guaranteed

to be positive and the firm’s problem exhibits monotone complements which sufficient for
SCD-C from below. On the other hand, if the Hessians for all n is negative semidefinite, the
difference is guaranteed to be negative and the firm’s problem exhibits monotone substitutes
which sufficient for SCD-C from above. Translating this condition to restrictions on the cost
and demand functions, the (k, k↘)th element of the Hessian HΘv∞n is as follows.

∂2v∞n
∂Θkin∂Θk↘in

=
∂v∞n (c)

∂c  
↓v∞↘n

∂g (Θ, z)
∂Θkin  
↓g↘k

(
↗∂ ln g (Θ, z)

∂Θk↘in

)

εv∞↘n
↗

↗ ∂ ln g↘k(Θ,z)
∂ ln Θk↘ in

↗ ∂ ln g(Θ,z)
∂ ln Θk↘ in





επε↘
n
↓

∂2vεn(c)
∂c2

∂vεn(c)
∂c

= εqn (p)
  

demand elasticity

d ln p∞n
d ln c  

passthrough

The sign of this element is entirely determined by the term in the square brackets, since the
other terms are positive by assumption. We summarize the result below.

Proposition (Sufficient condition for SCD-C). Suppose the firm’s problem satisfies Assumptions
4–6. Then, the following condition is sufficient for the firm problem to satisfy SCD-C from above.

d ln qin (L; z)
d ln pin (L; z)

d ln pin (L; z)
d ln cin (L; z)  

Demand Channel

↖
↗ ∂ ln g↘k(Θ,z)

∂ ln Θk↘ in

↗ ∂ ln g(Θ,z)
∂ ln Θk↘ in  

Supply Channel

∝n, k, k↘ (13)

Reversing the inequality yields a sufficient condition for SCD-C from above.
This condition collapses in the following special cases.

1. In the case of CES demand, the demand channel collapses to σ.
2. In the case of Pollak (1971) demand, the demand channel collapses to

σn

1 ↗


pεn
Pε

n

σn

  
Demand Elasticity

(σn ↗ 1) +


pεn
Pε

n

σn

(σn ↗ 1) + (σn + 1)


pεn
Pε

n

σn

  
Passthrough

which is bounded below by σn.
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3. In the single-dimensional cost formulation of Tintelnot (2017), Antras, Fort, and Tintelnot (2017),
and Arkolakis, Ramondo, et al. (2018), the supply channel collapses to 1 + ϱ

1↗ρ .
4. In the multi-dimensional formulation of Lind and Ramondo (2023), the condition becomes

d ln qin (L; z)
d ln pin (L; z)

d ln pin (L; z)
d ln cin (L; z)

↖ 1 + ϱ for SCD-C from above

⇒ 1 + ϱ +
ρk

1↗ρk
ϱ

Θ
1↗ρk
kin

∑j Θ
1↗ρk↘
jin

∝k for SCD-C from below

By assumption, an additional production location always lowers the marginal cost of the
firm to supply its final good to any location. The firm’s problem exhibits positive complemen-
tarities when an additional locations leads to a larger profit gain the more locations the firm
operates, and vice versa for negative complementarities. Equation (13) decomposes this effect
into a supply-side component and a demand-side component.

The supply-side component captures how much an additional production location reduces
the marginal cost of the firm, while the demand-side component captures by how much
variable profits increase when the marginal cost of the firm drops. The balance of these two
forces determines whether the firm’s overall profit maximization problem exhibits positive or
negative complementarities. The strength of the demand-side channel depends on the product
of the demand and passthrough elasticity. It summarizes the elasticity of variable profits to
a change in marginal cost, which is determined by how much a marginal cost change affects
the price (passthrough) and in turn by how much demand responds to a marginal decrease in
price (demand elasticity).

The condition in the above equation separates demand and supply side forces. The mod-
eling assumptions in Section 3 implies that demand side forces are always inducing positive
complementarities among production locations and supply side forces negative complemen-
tarities. In alternative models of multi-location production, it is possible for the cost side term
to be below, if the locations are complements in cost. One microfoundation for these cost-side
complementarities could be scale economies in the number of production sites, agglomeration
in the density of production locations, or complementarities that may arise from location-level
specialization.20

20Though it is possible for the demand-side complementarities to be negative, through either negative demand
elasticity or passthrough, this scenario is less likely.
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G.4. Su"cient Conditions for SCD-T
To derive a sufficient condition for SCD-T, we introduce a final Assumption on the role of
productivity.

Assumption 7 (Hicks-neutral productivity). The outer function g : RK ⇔ R+ → R+ is multiplica-
tively separable, so that it can be written

g (Θ, z) =
1
z

g̃ (Θ) .

We now derive a sufficient condition for SCD-C under Assumptions 4–7.
Following Assumption 7, the marginal value of location ω can be rewritten

Dωπi (L, z) = ∑
n

 1

0
v∞↘n

(
g̃ (Θ (L \ {ω}) + ξin (ω) t)

z

)

⇔ ξin (ω)
↘ ̸Θ g̃ (Θ (L \ {ω}) + ξin (ω) t)

1
z

dt ↗ Fij

.

Comparing this marginal value for two otherwise identical agents with productivities z1 and
z2, where z1 ↖ z2, it is sufficient for SCD-T to show that the marginal value of the location in ω

is higher for the agent with the higher productivity.

Dωπi (L, z2)↗ Dωπi (L, z1) = ∑
n

 z2

z1

 1

0

[
εv∞↘n

↗ 1
]



↗
v∞↘n


g̃(ξin(ω)t+Θ(L\{ω}))

z



z2






⇔ ξin (ω)
↘ ̸Θ g̃ (ξin (ω) t + Θ (L \ {ω}))dtdz

Similarly to the argument for SCD-C, all terms in this expression are positive by assumption
except the term in square brackets. Therefore, for this difference to be non-negative, it is
sufficient for the term in the second set of square brackets to be positive. We thus derive the
simple sufficiency condition for SCD-T that εv∞↘n

⇒ 1. We summarize below.

Proposition (Sufficient condition for SCD-T). Suppose the firm’s problem satisfies Assumptions
4–7. Then, the following condition is sufficient for the problem to satisfy SCD-T.

d ln qin (L; z)
d ln pin (L; z)

d ln pin (L; z)
d ln cin (L; z)

⇒ 1 ∝n

Intuitively, the SCD-T condition requires that the variable profit increase associated with an
additional production location is higher at more productive firms, akin to a cross-derivative.
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This condition again separates into a demand-side effect on the left and a supply-side effect
on the right. The demand-side effect is identical to the one from SCD-C, and describes
the elasticity of variable profits to marginal costs. The supply-side effect captures how the
reduction in marginal costs associated with an additional production location interacts with
firm productivity. An additional production location is worth more at an unproductive firm
compared to a productive firm, since the productive firm has high marginal costs but can shore
up its low productivity by establishing more production locations. In other words, productivity
and production sites are substitutes in the firm’s cost function. As productivity enters the cost
function multiplicatively, the elasticity of substitution between the benefit of a production
location and the firm’s innate productivity is simply 1.

Under the CES assumption, the condition for SCD-T collapses to σ ⇒ 1.

H. Computational Implementation
In this section, we describe the practical implementation of the solution method, as well as the
general equilibrium framework which embeds it.

H.1. Solving CDCPs
“Eager” Squeezing Given the bounding pair

[
L,L

]
, the squeezing step requires computing

the marginal value of each location ω ↑ L at both the lower and upper bounding decision
sets. The computational implementation makes two modifications. First, it only computes
the marginal values for locations in L \ L: locations either included in L or excluded from L
remain included or excluded, respectively, and need not be rechecked.

Second, the squeezing step is “eager” in the sense that, once an undetermined location is
known to be included or excluded, the bounding pair updates before computing the marginal
value of subsequent undetermined locations. In particular, given an undetermined item
ω ↑ L \ L, updating occurs as follows.

L↘ =





L if Dω f

(
Lin) ↖ 0

L ↔ {ω} if Dω f
(
Lin) ⇒ 0

L↘
=





L \ {ω} if Dω f (Lout) ↖ 0

L if Dω f (Lout) ⇒ 0

,

Lin =





L if SCD-C above

L if SCD-C below

Lout =





L if SCD-C above

L if SCD-C below

The decision set Lin is the bounding set that helps determine whether the location is included;
similarly, the decision Lout is the bounding set that helps determine whether the location is
excluded.
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Eager squeezing implies that, once ω is known to be included or excluded, the bounding
pair tightens immediately to incorporate this information. Thus, the subsequent undetermined
items are considered on the tightened bounding pair. To facilitate the eager squeezing, the
computational implementation stores an auxiliary set A, which keeps track of the set of
locations ω which have already been checked with the current bounding pair but have been
neither definitely included nor excluded. The squeezing procedure thus has converged once
A = L \ L: that is, the marginal value of all undetermined locations have been evaluated at
the current bounding pair, and none of them can yet be definitely included or excluded.

Interval-based Generalized Squeezing and Refinement The lower and upper bounding
set functions imply a partitioning T on the type space. The computational implementation of
the policy function solution explicitly operates on this partitioning. In particular, each interval
Zt of the partitioning is stored separately as a tuple

(
Zt,Lt,Lt, At

)
, where Lt and Lt are the

bounding pair specific to the interval. Then, generalized squeezing refines the partition eagerly,
with the auxiliary set At tracking the locations in Lt \ Lt whose marginal values have been
checked at the current bounding pair but have been neither definitively included nor excluded.
In particular, given a tuple

(
Zt,Lt,Lt, At

)
, the computational implementation chooses an

undetermined location ω ↑ Lt \ Lt and computes zg
ω

(
Lin

t
)

and zg
ω (L

out
t ). If zg

ω

(
Lin

t
)

is within
the interval Zt, then the partition refines to include ω for all z ↑ Zt above this cutoff; similarly,
if zg

ω (L
out
t ) is within the interval, then the partition refines to include ω for all z ↑ Zt below

this cutoff. The computational implementation refines each interval independently, and has
converged when At = Lt \ Lt for each interval.

Once generalized squeezing has converged, any interval for which Lt ≃= Lt is refined with it-
erative cutoff search, described in Section E.2. In particular, the computational implementation
does not use generalized branching.

Finally, the computed policy function is returned as a series of cutoffs {zt}T+1
t=1 which define

the intervals, together with the optimal decision sets for each interval {zt}T
t=1.

H.2. Computing and Calibrating the General Equilibrium Model
Aggregation The general equilibrium conditions require aggregating over the decisions of
individual firms. Aggregation in practice is straightforward since the policy function Lε

i (·)
for firms originating from i is simply a set of productivity intervals {[zi,t, zi,t+1]}t and their
associated optimal decision sets

{
Lε

i,t

}

t
.

For example, consider the price index condition (5), which requires integrating the pricing
decisions across all firms with positive production. Given the computed policy function, the
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condition can be rewritten as follows.

P1↗σ
n = ∑

i
Miµ

1↗σ ∑
Z t

i ↑Ti



 ∑
ω↑Lt

i

ε↗ϱ
iωn





σ↗1
ϱ  zi,t+1

zi,t
zσ↗1dGi (z) .

In particular, the integral can be divided by the intervals. Since the optimal location set
is constant within each interval, integration need only be performed over the firm types.
Moreover, with firm productivity Gi following the Pareto distribution, this integral can be
evaluated closed-form. Aggregation for the other equilibrium conditions follows a similar
logic.

Solution loops The policy function computation is embedded in a larger computational
routine to compute and estimate the general equilibrium of the model.

To compute the general equilibrium of the model, we start with an initial guess for the
aggregates

{
P(0)
ω , w(0)

ω , M(0)
ω

}

ω
, then use the following iterative routine.

1. Given aggregates
{

P(k)
ω , w(k)

ω , M(k)
ω

}

ω
, directly set Xω = wωHω for all ω to satisfy condition

(7).
2. Solve the policy functions

{
Lε

i (·)
}

i of the firm’s CDCP from equation (2) using the policy
function method. The policy function also determines z̃i as the lowest type to operate at
least one location, satisfying condition (3).

3. Given the policy functions
{
Lε

i (·)
}

i, use deviations from aggregate conditions to update
the aggregates. In particular,

• update
{

P(k)
ω

}

ω
using (5);

• update
{

w(k)
ω

}

ω
using (6); and

• update
{

M(k)
ω

}

ω
using (4).

To estimate the general equilibrium model, we set the parameters {σ, ϱ, ζ} as well as country-
level variables {Hω, wω}ω as described in Table 1. We also set Xω = wωHω following condition
(7) as well as the number of entrants {Mi}i by dividing the empirical number of enterprises by
the empirical survival rate.

We then iteratively calibrate, holding fixed these values. We start with an initial guess for
the market size aggregate

{
P(0)

n

}

n
, the fundamentals

{
T(0)
ω , z(0)ω , f (0)ω

}

ω
, and the bilateral cost

parameterization
{

τ
(0)
ω , γ

(0)
ω , ν

(0)
ω

}

ω
with

{
κ

v(0)
τ , κ

v(0)
γ , κ

v(0)
ν

}

v
. Each iteration then proceeds as

follows.

1. Solve the policy functions
{
Lε

i (·)
}

i of the firm’s CDCP from equation (2) using the policy
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function method. The policy function also determines z̃i as the lowest type to operate at
least one location, satisfying condition (3).

2. Given
{
Lε

i (·)
}

i, compute trade, MP, and affiliate flows in the model; estimate the PPML
specification of Appendix C.2.

3. Use deviations from aggregate conditions and moments to update. In particular,

• update
{

P(k)
n

}

n
using (5);

• update
{

T(k)
ω , z(k)ω , f (k)ω

}

ω
using respectively deviations from (6), the gap between

model and data total foreign MP conducted by firms from each country, and the gap
between model and data survival rate in each country;

• update
{

τ
(k)
ω , γ

(k)
ω , ν

(k)
ω

}

ω
using the gap between model and data own shares of

trade (absorption), MP (domestic production), and affiliates (domestic production
locations); and

• update
{

κ
v(k)
τ , κ

v(k)
γ , κ

v(k)
ν

}

v
using the gap between the model and data coefficients

of the PPML regression.

The iteration converges to (near) zero on all deviations. The routine thus computes the GE and
calibrates the model at once. After convergence, invert the aggregate condition (4) to recover
f e
i .

I. Additional Calibration and Counterfactual Details
In this section, we present additional figures and tables that accompany Sections 4 and 5.

Estimated Fundamentals In the left panels of Figure 10, we plot our estimates of the head-
quarter productivity shifter zi of the firm Pareto distribution against the location productivity
shifter Tω of the Fréchet distribution of location-input-specific productivity shocks. Recall that
zi is identified by the total amount of foreign affiliate sales of firms headquartered in country i,
while Tω is chosen to match countries’ level of GDP per capita. Unsurprisingly, the US has the
highest headquarter productivity in our dataset. Relatively developed economies with little
MNE activity, such as Greece and Spain, lie below the US and to the right of the 45 degree line
that defines the US comparative advantage. On the opposite side of the 45 degree line and
close to the US lie developed countries with relatively high MNE activity such as Netherlands,
Germany, and Finland.

In the right panel of Figure 10, we plot the entry cost and the base component of the fixed
cost for each country. In our data, one-year survival rates range from 77 to 93 percent, so that
the ratio between the base component of the fixed cost and the entry cost varies little across
countries. More importantly, there is a strong correlation between the level the base component
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Negative Complementarities Positive Complementarities

Log MP Costs Log Fixed Costs Log MP Costs Log Fixed Costs
(1) (2) (3) (4) (5) (6) (7) (8)

Log Distance ↗0.06∞∞ 0.00 0.75∞∞∞ 0.35 ↗0.15∞∞∞ 0.02 0.88∞∞∞ 0.43
(0.02) (.) (0.04) (.) (0.03) (.) (0.04) (.)

Colony 0.03 ↗0.19 0.04 ↗0.21
(.) (.) (.) (.)

Contiguity ↗0.06 ↗0.05 ↗0.13 0.01
(.) (.) (.) (.)

Language ↗0.53∞∞∞ ↗0.07 0.70∞∞∞ ↗0.08 ↗0.81∞∞∞ ↗0.11 0.67∞∞∞ ↗0.20
(0.07) (.) (0.14) (.) (0.10) (.) (0.15) (.)

Destination FE No Yes No Yes No Yes No Yes
Origin FE Yes No Yes No Yes No Yes No

N 707 707 707 707 707 707 707 707

TABLE 4: CALIBRATED COSTS AND GRAVITY VARIABLES

The table shows results from regressing the log of the calibrated MP costs and fixed costs on log distance. and
other gravity variables. The even-numbered columns are the true specification of costs in the model, reflected in
the zero standard errors. The odd-numbered columns reflect the specification of Alviarez, Cravino, and Ramondo
(2023). The left panel shows results from the baseline calibration while the right panel replicates these regressions
in the alternative calibration with no fixed costs. We drop country pairs with zero MP for which we infer infinite
MP costs and fixed costs. We also drop own country pairs. Levels of significance are denoted as follows: ∞∞∞

Significant at 1 percent level, ∞∞ Significant at 5 percent level, and ∞ Significant at 10 percent level.

of the fixed cost and GDP of each country. This relationship is the result of an important pattern
in our data: the log number of active enterprises increases with the log country population
but less than one for one (coefficient of 0.81). To generate this pattern, our model requires
fixed costs and entry costs that are increasing with population.21 This empirical regularity is in
contrast with many tractable models of monopolistic competition with firm entry in which the
number of entrants is a linear function of the population, such as Melitz (2003), Chaney (2008),
or Arkolakis, Ramondo, et al. (2018). Because our model does not imply this relationship, our
calibration requires a direct measure of entering enterprises Mi, in addition to a measure of
local population Hi, in line with Adão, Arkolakis, and Ganapati (2020).

Table 4 shows the relationship between the calibrated MP costs and fixed costs by distance
and other gravity variables. We drop pairs of countries for which we observe no MP activity in
the data since we infer infinite MP costs for them. We drop diagonal entries of the cost matrices
which are normalized to 1.

21In a dynamic setup as in Melitz (2003), our estimates of firm entry costs correspond to the yearly amortized
entry cost.
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The table compares the results from the calibration with negative complementarities on
the left against the calibration with positive complementarities on the right. Even-numbered
columns represent the true specification of costs in the model, reflected in the zero standard
errors. On the other hand, odd-numbered columns follow the specification of Alviarez,
Cravino, and Ramondo (2023), in particular including origin-specific fixed effects but omitting
the colony and contiguity gravity variables.

Figure 11 graphs the trade shares, inward MP sales shares, and inward foreign affiliate
shares generated by the calibrated models against the same objects in the data. The model
provides a good fit, especially for larger shares. The fit for larger shares is better since the
targeted PPML specification in Table 3 is in levels, thereby putting relatively more weight on
larger countries (see Sotelo 2019, for a discussion). The model-generated data produces exactly
the same coefficient estimates as in Table 3.

Alternative Calibration without Fixed Costs Many papers in the multinational production
literature abstract from modeling fixed costs, which simplifies computation by eliminating the
CDCP (see, e.g., Ramondo and Rodríguez-Clare 2013; Ramondo 2014; Arkolakis, Ramondo,
et al. 2018; Fajgelbaum et al. 2019). Without fixed costs, firms set up production locations in all
countries and only face the intensive margin problem of choosing how much to produce in each.
Therefore, to better understand the role of fixed costs in determining economic allocations, we
also calibrate a version of the model where we set the fixed costs to zero, so that fi = 0 for all
origins i. As a result, the firm establishes production in all locations ω ↑ L so profit function
collapses to

πi (z) = ∑
n
(µ ↗ 1) qin (L, z) cin (L, z) .

We then follow nearly the same procedure as with the full model, but drop as calibration
targets the survival rate of firms and the coefficients in the third column of Table 3. When there
are no fixed costs of operation or production, all entrants survive and establish production in
all locations ω. We compare results from this calibration to our baseline calibration in Section
5.2, to understand the importance of fixed costs in shaping counterfactual responses of the
economy to economic shocks.

Figure 12 reports the welfare impact of moving from the baseline calibrated economy to MP
autarky, for the benchmark calibrations with fixed costs as well as the alternative calibrations
without fixed costs. For most countries, the welfare consequence of MP autarky is more
negative in the calibration without fixed costs compared to the benchmark calibration with
fixed costs.
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(A) Negative Complementarities

(B) Positive Complementarities

FIGURE 10: TECHNOLOGY, BASE COMPONENT OF FIXED COSTS, AND ENTRY COSTS IN THE
BASELINE CALIBRATION

The figure shows a number of calibrated shifters in the model. The left panel graphs the Pareto minimum
zε/(σ↗1)

i of the firm productivity distribution against the scale Tω of Fréchet distribution of location-input-specific
productivity shocks. The terms zε/(σ↗1)

i and Tω appear multiplicatively in the expression for trilateral flows. The
right panel plots the entry cost f e

i against the base component of the fixed cost fi.
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(A) Negative Complementarities

(B) Positive Complementarities

FIGURE 11: TRADE SHARES, INWARD MP SALES SHARES, AND INWARD AFFILIATE SHARES
IN THE DATA AND THE BASELINE CALIBRATION

The figures shows graphs statistics from the data obtained from Alviarez (2019) against the same objects in the
calibrated model. The left panel shows trade shares, the second panel shows inward MP sales shares, and the
third panel shows inward MP affiliate shares. The correlations between the off-diagonal shares in the model and
data are 0.757, 0.726, and 0.824 respectively in the calibration with negative complementarities; and 0.802, 0.763,
0.728 respectively in the calibration with positive complementarities.
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(A) Negative Complementarities

(B) Positive Complementarities

FIGURE 12: WELFARE CONSEQUENCES OF SHUTTING DOWN MULTINATIONAL PRODUCTION
WITH AND WITHOUT FIXED COSTS

The figure shows the percentage welfare change 100 ⇔
(
ŵi/P̂i ↗ 1

)
from moving from the calibrated economy

to MP autarky. The countries are ordered by the size of the welfare effect in the calibration with positive
complementarities and fixed costs.
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