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Motivation

▶ Discrete choice problems with complementarities among options
▶ Tesla choosing in which countries to operate production plants
▶ Starbucks choosing blocks in Manhattan to operate shops
▶ A government choosing locations for critical infrastructure

▶ Without more structure: an intractable NP hard problem

▶ This paper. Solve such combinatorial discrete choice problems

▶ Key. Economic complementarities provide exploitable structure



Part I

Theory



Notation

▶ Set of discrete options L
Index individual items in L by ℓ, so that ℓ ∈ L

▶ Define collection of subsets (power set) of L as: P(L)
Denote individual element in P(L) by L , so that L ∈ P(L)

▶ Define the space of objective functions F = {f : P(L) → R}
Denote an individual objective by f , so that f ∈ F
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Characterization

▶ Maximization over subsets. Choose the subset of items L ⊆ L
leading example: multinational location problem

L ⋆ = arg max
L⊆L

f (L )

▶ Marginal value operator. For an item ℓ, the value with it compared to without it,
contingent on L
discrete analogue to derivative

Dℓf (L ) = f (L ∪ {ℓ})− f (L \ {ℓ})

▶ Combinatorial discrete choice. If the marginal value varies with L



Single crossing differences in choices
From below. If ℓ is valuable given a small
set, remains valuable given a large set:

Dℓf (L ) ≥ 0 ⇒ Dℓf
(
L ′) ≥ 0

Dℓf (·) = 0

L1 ⊂ L2 ⊂ L3 ⊂ L4

Supermodularity. More valuable given
large set compared to small set

Dℓf (L ) ≤ Dℓf
(
L ′)

From above. If ℓ is valuable given a large
set, remains valuable given a small set:

Dℓf (L ) ≥ 0 ⇒ Dℓf
(
L ′) ≥ 0

L1 ⊂ L2 ⊂ L3 ⊂ L4

Submodularity. More valuable given
small set compared to large set

Dℓf (L ) ≥ Dℓf
(
L ′)



Single crossing differences in choices

Definition (Quasi-supermodularity and quasi-submodularity)

The function f is:

a) quasi-supermodular if, for all L ,L ′ ∈ P (L),

f
(
L ∪ L ′) ≤ f

(
L ′) ⇒ f (L ) ≤ f

(
L ∩ L ′)

b) quasi-submodular if, for all L ,L ′ ∈ P (L),

f (L ) ≥ f
(
L ∩ L ′) ⇒ f

(
L ∪ L ′) ≥ f

(
L ′)

Shannon and Milgrom 1994; Milgrom 2004

Corollary

Quasi-supermodularity is sufficient for SCD-C from below; quasi-submodularity is
sufficient for SCD-C from above.



“Local optimality”

▶ Jia 2008. Central mapping:

Φ (L ) = {ℓ ∈ L | Dℓf (L ) ≥ 0}

“All items with non-negative marginal value to L ”

▶ No deviation by one element. Necessary, not sufficient!
similar to a first order condition

L ⋆ = Φ(L ⋆)

▶ if ℓ is chosen (ℓ ∈ L ⋆), then it must contribute positive marginal value (ℓ ∈ Φ(L ⋆))
▶ if ℓ is not chosen (ℓ ̸∈ L ⋆), then it cannot add value when included (ℓ ̸∈ Φ (L ⋆))



Order-preserving (reversing)

Lemma
If f satisfies SCD-C from below (above), Φ is order-preserving (reversing).



Squeezing mapping

▶ Bounding pair
[
L ,L

]
. Defines a restricted domain{

L
∣∣L ⊆ L ⊆ L

}
⊆ P(L)

▶ the full domain is represented [∅, L] = P(L)
▶

[
K ,K

]
is “tighter” than

[
L ,L

]
if
[
K ,K

]
⊆

[
L ,L

]
, i.e. it defines a

subdomain

▶ Squeezing mapping. Acts on bounding pairs

S
([

L ,L
])

=
[
inf

{
Φ (L ) ,Φ

(
L

)}
, sup

{
Φ (L ) ,Φ

(
L

)}]
▶ Iterative application. Let Sk

([
L ,L

])
denote applying S iteratively k times



Main theorem: Single agent problem

Theorem 1 (Squeezing procedure)

If f satisfies SCD-C, then:

a. let
[
L (k),L

(k)
]
≡ Sk ([∅, L]); then,

∅ ⊆ . . . ⊆ L (k) ⊆ L (k+1) ⊆ L
(k+1) ⊆ L

(k) ⊆ . . . ⊆ L

“iterative application weakly tightens the problem’s domain”

b. if L ⋆ ∈ [L ,L ′], then L ⋆ ∈ S ([L ,L ′])
“if the optimum set is in the restricted domain, S will not discard it”

c. S |L| ([∅, L]) = S |L|+1 ([∅, L])
“iterating the squeezing step S converges to a fixed point in |L| steps or fewer”



Proof intuition: SCD-C from above

{}

{C ,G ,U}

{C} {G} {U}

{C ,G} {C ,U} {G ,U}

{}

+

{C ,G ,U}

−

{G}{C}

{C ,U}

{}

{U}
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{}

+

{G ,U}{C ,G}

{C ,G ,U}

{G}

▶ Bounding pair. L ⊆ L ⋆ ⊆ L

L tracks elements in L ⋆

L discards elements not in L ⋆

L \ L tracks elements maybe in L ⋆

▶ Rule out suboptimal strategies.
▶ check marginal value at points of extreme

complementarity
▶ iteratively squeeze: update the subset and

superset
halve decision space each time
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SCD-C from below
Lattice foundation

▶ Jia 2008. Solution method for supermodular f :

1. Central mapping. By construction, L ⋆ is a fixed point of:

Φ (L ) ≡ {ℓ ∈ L | Dℓf (L ) ≥ 0}

2. Order-preserving Φ. With supermodular f
3. Tarski 1955. Order-preserving Φ has a smallest and largest fixed point . . .
4. Kleene 1936. . . . identified by iterating Φ∞ (∅) and Φ∞ (L)

▶ SCD-C (from below). Necessary and sufficient condition for Φ to be
order-preserving



SCD-C from above
Lattice foundation

▶ Order-reversing Φ. Tarski 1955; Kleene 1936 no longer apply

▶ Perfect substitutes intuition. Consider two elements, {a, b}
▶ both items have positive marginal value in isolation, but neither have positive

marginal value if the other is included

Φ (∅) = {a, b} Φ ({a, b}) = ∅

▶ the fixed points are uncomparable, i.e. there is neither a smallest nor largest fixed
point — Tarski 1955 breaks down . . .

Φ ({a}) = {a} Φ({b}) = {b}

▶ . . . without the existence of smallest and largest fixed points, does iteration
converge? To what?



SCD-C from above
Lattice foundation

A generalization of the notion of a fixed point:

Definition (Fixed edge)

Two sets, L and L ′ with

Φ (L ) = L ′ , Φ
(
L ′) = L

▶ Klimeš 1981. Order-reversing Φ has an “extreme” fixed edge L inf ,L sup!

L inf ⊆ L ⊆ L ′ ⊆ L sup

▶ Iteration. limn→inf Φ
2n (∅) = L inf and limn→inf Φ

2n+1 (∅) = L sup

vice versa from L



SCD-C from above
Lattice foundation

▶ Φ’s “Fixed edge convergence”. After enough applications, the mapping Φ
alternates back and forth between the two points in the fixed edge

▶ Squeezing step. Converges to fixed point by construction:

S
([

L inf ,L sup
])

=
[
Φ (L sup) ,Φ

(
L inf

)]
=

[
L inf ,L sup

]
by “flipping” the order of the two sets



Refinement: branching

▶ If L inf = L sup, then L inf = L ⋆

▶ Sometimes: converge, but L inf ⊂ L ⋆

e.g. when complementarities very strong

▶ Choose an item ℓ ∈ L \ L , then
▶ divide into two subproblems: with and without ℓ
▶ squeeze on each problem, branching as needed tree

▶ End: “conditionally optimal” decision sets
▶ among them, the global optimum
▶ intuition: “brute force” one decision at a time,

squeeze as much as possible

{}

{C ,G ,U}

{C} {G} {U}

{C ,G} {C ,U} {G ,U}

{G}

{C ,U}

{C ,G ,U}

{}

{G}{C} {U}

{}

{C ,G ,U}

{G ,U}{C ,U}

{U}

{C ,G}
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Heterogeneous agent problem

▶ Augmented objective function. f : P (L)×R → R maps the set L and the agent
type z ∈ R to a scalar payoff f (L , z)
leading example: multinational location problem with heterogeneous productivity

▶ Policy function. Function L ⋆ : R → P (L) specifies the optimal decision set for
each type z :

L ⋆(z) = arg max
L∈P(L)

f (L , z)



Single crossing differences in types

▶ SCD in types (SCD-T). For all elements ℓ ∈ L, decision sets L ∈ P (L), and
types z , z ′ ∈ R such that z < z ′,

Dℓf (L , z) ≥ 0 ⇒ Dℓf
(
L , z ′

)
≥ 0

SCD-T is equivalent to the single-crossing differences condition of Milgrom 2004

(originally “single crossing” in Shannon and Milgrom 1994).

▶ With SCD-C and SCD-T. The policy function changes its value only at a finite
number of cutoff productivities:

z1 z2 z3

L ⋆
1 L ⋆

2 L ⋆
3

▶ Approach. Partition type space into intervals that share the same policy; and find
policy associated with each interval



Type space partition

▶ Bounding set functions. Extend bounding pair to set-valued functions L (·) and
L (·) with

L (z) ⊆ L ⋆ (z) ⊆ L (z)

for any productivity z ∈ R
trivial bounding set functions: constant functions [∅, L]

▶ Induced partition. From bounding set functions:

T
([

L (·) ,L (·)
])

= {Z1, . . .Zt , . . .ZT}
such that Zt =

{
z ∈ R | L (z) = L t ,L (z) = L t

}
,



Type space partition

L (·) |
z{USA} {DEU,USA}

L (·) |
z ′∅ {DEU}

T
Z1 :

[∅, {USA}]

|
Z2 :

[∅, {DEU,USA}]

|
Z3 :

[{DEU}, {DEU,USA}]

Together, the two set-valued functions imply the partitioning T , which creates
intervals of productivity.



Identifying cutoffs: intuition

▶ SCD-C. “Choice monotonicity” rules out decision sets without explicitly
evaluating their payoff; together with . . .

▶ SCD-T. “Type monotonicity” means choice monotonicity can discard decision sets
for productivity ranges without evaluating the objective at any of the productivities



Generalized squeezing

▶ With SCD-C + SCD-T. For each ℓ and L , there is s unique type indifferent
between including ℓ in L

0 = Dℓ

(
L , zgℓ (L )

)
▶ Indifferent type. Use to avoid evaluating Φ(L , z) at each z for a given L :

Φg (L , z) =
{
ℓ | z ≥ zgℓ (L )

}
▶ Generalized squeezing mapping.

Sg
([

L (·) ,L ′ (·)
])

=
[
inf

{
Φg (L (·) , ·) ,Φg

(
L ′ (·) , ·

)}
,

sup
{
Φg (L (·) , ·) ,Φg

(
L ′ (·) , ·

)}]



Main theorem: Policy function

Theorem 2 (Generalized squeezing procedure)

If f satisfies SCD-C and SCD-T,

a. Theorem 1a. and 1b. hold at each z

b. (Sg )|L| ([∅, L]) = (Sg )|L|+1 ([∅, L])

Proof.
Let Φ (L , z) ≡ {ℓ | Dℓf (L , z) ≥ 0} be the mapping Φ evaluated at the type z .
Applying Theorem 1 element-wise, we have for all z that

L t ⊆ Φ
(
L t , z

)
⊆ L ⋆ (z) ⊆ Φ (L t , z) ⊆ L t .

Then, it suffices to show that, for all z , Φg (L , z) coincides with Φ (L , z). The proof
uses SCD-C and SCD-T to establish this equivalence.



Proof intuition: SCD-C from above

For a given interval Zt ∈ T :

1. select ℓ ∈ L t \ L t , compute the two cutoffs

zgℓ (L t) ≤ zgℓ
(
L t

)
2. update bounding set functions:

▶ for all firms with productivity z < zgℓ (L t) in Zt , ℓ is not part of the optimal

decision set: update upper bounding set function to L t \ {ℓ} for these productivities
▶ for all firms with productivity z > zgℓ

(
L t

)
in Zt , ℓ is in the optimal decision set:

update lower bounding set function to L t ∪ {ℓ} for these productivities

3. repeat for all ℓ ∈ L t \ L t

4. use new bounding set functions to update partition



Part II

Application: MNEs
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A model of multinational activity

▶ Setup.
▶ Firms are born in origin country with productivity z ∼ g(z)
▶ Each firm produces a differentiated variety, compete monopolistically
▶ There are L potential production locations

▶ Firm problem overview.
▶ CDCP. Firms choose production locations subject to complementarities among

locations and fixed costs
▶ Heterogeneity. Productivity differences → Firms choose different production location

sets → MNEs arise endogenously

▶ Full GE. Endogenous wages, firm entry, . . .



The firm problem

1. Location choice (extensive margin). Choose a set of production locations L
index origin country with i , production location with ℓ, destination market with n

2. Price and quantity (intensive margin). Choose price (quantity), contingent on
CES marginal cost
a possible microfoundation: input sourcing (Tintelnot 2017; Antràs, Fort, and Tintelnot

2017; Arkolakis, Ramondo, et al. 2018) details

cin (L , z) =
1

z

[∑
ℓ∈L

(
wℓγiℓτℓn

Tℓ

)−θ
]− 1

θ

=
1

z

[∑
ℓ∈L

ξ−θ
iℓn

]− 1
θ

▶ marginal cost declines in L
▶ θ: substitutability (complementarity) among locations in cost



The firm problem

L

i

(z)

z

HQ

i

wC fiC

C

wG fiG

G

wU fiU

U

ciC (L ,z)

qC (ciC ) πiC (L , z)

ciG (L ,z)

qG (ciG ) πiG (L , z)

ciU(L ,z)

qU(ciU) πiU(L , z)

c(L ,z)

π(L , z)q(c)

γiG

τGU

τGG

τGC

γiU

τUU

τUG

τUC



The firm problem

▶ CES demand. In each market n,
▶ the firm sets constant markup µ = σ

σ−1 over marginal cost
▶ let Xn be total expenditure and Pn be CES price index

▶ Total profits. Adding up over destination markets:

πi (L , z) ≡
[
1− 1

µ

]∑
n

Xn

(
zPn

µ

)σ−1
[∑
ℓ∈L

ξ−θ
iℓn

]σ−1
θ

−
∑
ℓ∈L

wℓfiℓ

where fiℓ is the fixed labor cost of establishing production in location ℓ

▶ Location choice policy function. The firm chooses production locations to
maximize total profits:

L ⋆
i (z) = arg max

L⊆L
πi (L , z)



Firm location choice is a CDCP

▶ Marginal value of location k. Trades off the marginal cost savings with fixed cost:

1

σ

∑
n

Xn

(
zPn

µ

)σ−1

[
ξ−θ
ikn +

∑
L

ξ−θ
iℓn

]σ−1
θ

−

[∑
L

ξ−θ
iℓn

]σ−1
θ

− wk fik

complementarities preclude deciding on each location independently from the
other locations

▶ Applying our solution. Establish SCD first:
▶ SCD-C. Sufficient condition: σ − 1 ≶ θ

θ cost-side cannibalization (or complementarity)
σ demand-side market-level scale effect

▶ SCD-T. Sufficient condition: σ > 1

general demand



Policy function in practice

▶ Policy function Li (z). Maps firm productivity z to production location set example

▶ Aggregation. Production in location ℓ of the average active firm from origin i
requires integrating over optimal decision set for each active type z

∑
n

Xn

(
zPn

µ

)σ−1 ∫ 1⋆ℓ (z)ξ
−θ
iℓn∑

k∈L ⋆(z) ξ
−θ
ikn

 ∑
L ⋆

i (z)

ξ−θ
iℓn

σ−1
θ

dGi (z | active)

▶ Gravity at the firm level (across locations), but not in the aggregate



Closing and quantifying the model

▶ Aggregate conditions. details

▶ Free entry with entry labor cost f ei
▶ Labor market clearing with Hℓ units, inelastically supplied
▶ Balance of payments

▶ Quantification. Calibrate with:
▶ 32 countries using aggregate data details

Alviarez 2019; Feenstra, Inklaar, and Timmer 2015
▶ two levels of complementarities to highlight how it shapes quantitative outcomes

▶ Negative complementarities. σ−1
θ

= 2
3

Arkolakis, Ramondo, et al. 2018
▶ Positive complementarities. σ−1

θ
= 3

2
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Speed
Solving for the policy function (s)

Negative Comp. Positive Comp.

Countries Naive Sqz. Policy Naive Sqz. Policy
(1) (2) (3) (1) (2) (3)

8 8 0.423 0.019 7 0.480 0.034
16 5454 2.26 0.039 4356 2.36 0.087
32 – 11.1 0.11 – 13.2 0.19
64 – 66.0 1.32 – 94.5 1.29
128 – 456 14.1 – 795 14.7
256 – 3239 331 – 6479 374

Grid points 214 214 – 214 214 –

▶ Negative complementarities solve in comparable time

▶ Policy function is faster than incumbent (unhighlighted) approaches



Precision

Average percentage error in Xiℓn from discretization: drops 5–10p.p. each grid point
doubling while policy function introduces no error



Wide applicability

Fast computation across range of complementary (0.15–3.9); longer compute with
strong complementarities



Micro-data not required

Calibration matches aggregates shares (with negative complementarities)



Revisiting the welfare equation

▶ Arkolakis, Costinot, and Rodŕıguez-Clare 2012. The welfare change from reverting
to autarky:

ln
ŵi

P̂i

= ln π̂
− 1

σ−1

iii︸ ︷︷ ︸
openness

+ ln M̂
1

σ−1

i + ln ˆ̃z
− ζ

σ−1

i︸ ︷︷ ︸
varieties

+ ln ˆ̃zi + ln

 ∑
Zt

i ∈Ti

λt
iii

(
stiii

)σ−1
θ

−1

 1
σ−1

︸ ︷︷ ︸
average productivity

▶ General “openness”. Applies for either trade and MP autarky
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Welfare channels

Openness. Standard term captures reduction in real consumption, usually negative

ln π̂
− 1

σ−1

iii

Varieties.

ln M̂
1

σ−1

i + ln ˆ̃z
− ζ

σ−1

i

▶ Trade and MP autarky shrink the profits of previously large firms engaged in these
foreign activities → Selection cutoff falls

▶ More entry and easier survival

▶ Usually: more varieties, positive effect



Welfare channels

Productivity.

ln ˆ̃zi + ln

 ∑
Zt

i ∈Ti

λt
iii

(
stiii

)σ−1
θ

−1

 1
σ−1

▶ Extensive margin: since selection cutoff falls, usually negative

▶ Intensive margin:
▶ Trade and MP autarky shrink the profits of previously large firms engaged in these

foreign activities → Relative firm sizes adjust
▶ Sales-weighted in average productivity changes



MP autarky: Quantification

Left bars: results from the calibration with negative complementarities (right bars:
positive complementarities)



MP autarky: Quantification

Top figure: results from calibrations with negative complementarities (bottom: positive
complementarities)



To conclude

▶ Combinatorial discrete choice problems are common
▶ Trade: multinational production, either export platforms or GVCs; firm sourcing

partners; extended gravity export destinations
▶ IO: input complementarity; product mix
▶ (International) macro: tax avoidance and profit shifting, portfolio choice
▶ Spatial economics: transport networks; real estate choices
▶ . . .

▶ We develop a new approach to CDCPs
▶ With negative or positive complementarities
▶ Policy function solution for aggregation

▶ Julia package: CDCP.jl

https://github.com/rowanxshi/CDCP.jl
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Branching tree

▶ convergence when bounding pair
coincides on each branch

▶ branching collects all fixed points of Φ
invariant to the items selected and order
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Cost minimization for each destination n

▶ the unit cost of producing an input υ at location ℓ ∈ L then delivering it to
market n is

γiℓ
wℓ

zφℓ(υ)
τℓn

γiℓ arms-length iceberg cost of MP

wℓ labor cost in production location

z firm productivity

φℓ(υ) location-input shifter

τℓn iceberg cost of trade

▶ tractable export platforms: for each destination n and input υ, the firm chooses
the least-cost production location



Cost minimization for each destination n

▶ negative complementarity: marginal cost declines in L , but decreasingly so
(cannibalization)
Antràs, Fort, and Tintelnot 2017; Tintelnot 2017

cin(L ; z) =

[∫
φ

(
min
ℓ∈L

γiℓ
wℓ

zφℓ
τℓn

)1−η

dF (φ;L )

] 1
1−η

▶ closed form with Fréchet location-input draws (η < θ + 1)
Arkolakis, Ramondo, et al. 2018; Ramondo and Rodŕıguez-Clare 2013; Lind and Ramondo

2023

cin(L ; z) =
1

z
Γ

[∑
ℓ∈L

(
γiℓwℓτℓn

Tℓ

)−θ
]− 1

θ
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General demand function

▶ sufficient condition for supermodularity

εD︸︷︷︸
demand elasticity

× d ln p

d ln c︸ ︷︷ ︸
passthrough

≥ θ︸︷︷︸
cannibalization

+1

▶ compares (positive) demand-side complementarity with (negative) supply-side
complementarity

▶ sufficient condition for submodularity: flip the sign

▶ flexible framework for discrete decisions and complementarities
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Policy function: Japan

▶ with negative complementarities

[-Inf, 0.65] +String[]

[0.65, 3.14] +["JPN"]

[3.14, 3.302] +["ROM"]

[3.302, 3.351] +["ITA"]

[3.351, 3.403] +["GBR"] -["ITA", "ROM"]

[3.403, 3.574] +["ITA"]

[3.574, 3.631] +["ROM"]

...

▶ with positive complementarities

[-Inf, 0.666] +String[]

[0.666, 4.253] +["JPN"]

[4.253, 4.354] +["DEU", "GBR", "FRA", "ITA", "POL", "ROM"]

...
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Aggregate conditions

▶ Free entry. Require f ei to draw productivity

wi f
e
i =

1

σ

∑
n

Xn
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zPn
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)σ−1

Θin (L
⋆
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σ−1
θ dGi (z)

−
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i (z)

wℓfiℓdGi (z)

▶ Price index. Aggregates over all firm origins i

P1−σ
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∑
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Aggregate conditions

▶ Labor market clearing. Inelastically supplied Hℓ units

wℓHℓ =
σ − 1

σ

∑
i ,n

XnMi

∫
1⋆iℓ(z) (wℓγiℓτℓn/Tℓ)

−θ∑
k∈L ⋆

i (z) (wkγikτkn/Tk)
−θ

×
(
zPn

µ

)σ−1

Θin (L
⋆
i (z))

σ−1
θ dGi (z)

+
∑
i

Mi

∫
1⋆iℓ(z)wℓfiℓdGi (z) +Mℓwℓf

e
ℓ

▶ Balance of payments.

Xn = wnHn
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Quantification

▶ Parameterization.
▶ gi (·) ∼ Pareto with shape ζ and minimum z i
▶ bilateral trade, MP, and fixed costs with gravity variables

▶ Calibration strategy.

Parameter Target

σ set to 4
Arkolakis, Ramondo, et al. 2018; Head and Mayer 2019

ζ firm sales tail
Arkolakis 2010

Tℓ, z i GDP, total foreign MP outgoing
fi , f

e
i enterprise survival rate, count

τℓn, γiℓ, νiℓ trade, MP, and affiliate flow
details
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Bilateral costs

▶ Parameterization. Gravity variables v ∈ {log dist,COL,BOR,COM}
Conte, Cotterlaz, Mayer, et al. 2023

log τℓn =
∑
v

κvτ vℓn + 1[ℓ ̸= n]τn + log (1 + tℓn)

log γiℓ =
∑
v

κvγviℓ + 1[i ̸= ℓ]γn

log fiℓ =
∑
v

κvf viℓ + 1[i ̸= ℓ]f n

▶ Match aggregate flows.

κvτ , κ
v
γ , κ

v
f corresponding coefficient on gravity variables in trade, MP, and
affiliate regressions

τn, γℓ, f ℓ own shares of “trade” (absorption), “MP” (domestic production),
and affiliates (domestic production locations)
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Micro-data not required

Calibration matches aggregates shares (with positive complementarities)
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